Wendelstein 7-X is a highly optimized stellarator that went into operation in 2015. With a 30 cubic meter volume, a superconducting coil system operating at 2.5 T, and steady-state heating capability of eventually up to 10 MW, it was built to demonstrate the benefits of optimized stellarators at parameters approaching those of a fusion power plant. We report here on the first results with the test divertor installed, during the second operation phase, which was performed in the second half of 2017. Operation with a divertor, and the addition of several new fueling systems, allowed higher density operation in hydrogen as well as helium. The effects that higher density operation had on both divertor operation and global confinement will be described. In particular, at high densities detachment was observed, and the highest fusion triple product for a stellarator was achieved.
Wendelstein 7-X is the first comprehensively optimized stellarator aiming at good confinement with plasma parameters relevant to a future stellarator power plant. Plasma operation started in 2015 using a limiter configuration. After installing an uncooled magnetic island divertor, extending the energy limit from 4 to 80 MJ, operation continued in 2017. For this phase, the electron cyclotron resonance heating (ECRH) capability was extended to 7 MW, and hydrogen pellet injection was implemented. The enhancements resulted in the highest triple product (6.5 × 1019 keV m−3 s) achieved in a stellarator until now. Plasma conditions [Te(0) ≈ Ti(0) ≈ 3.8 keV, τE > 200 ms] already were in the stellarator reactor-relevant ion-root plasma transport regime. Stable operation above the 2nd harmonic ECRH X-mode cutoff was demonstrated, which is instrumental for achieving high plasma densities in Wendelstein 7-X. Further important developments include the confirmation of low intrinsic error fields, the observation of current-drive induced instabilities, and first fast ion heating and confinement experiments. The efficacy of the magnetic island divertor was instrumental in achieving high performance in Wendelstein 7-X. Symmetrization of the heat loads between the ten divertor modules could be achieved by external resonant magnetic fields. Full divertor power detachment facilitated the extension of high power plasmas significantly beyond the energy limit of 80 MJ.
The transport of heavy impurities has been investigated at the Wendelstein 7-X stellarator during core electron root confinement (CERC) experiments. Iron atoms were injected via the laser blow-off technique and analyzed by VUV and x-ray spectrometers. The injected amount of iron does not change the global plasma parameters but yields strong enough line radiation for detailed studies based on the impurity transport code STRAHL. The latter is supplied with neo-classical diffusion and convection profiles from the drift kinetic equation solver (DKES) and has been embedded into a least-squares fit that searches for additional anomalous diffusion and convection profiles, required to explain the measurements. While the resulting convection velocities agree within uncertainties with neo-classical theory, the anomalous diffusion profile exhibits values more than two orders of magnitude larger than the neo-classical one. This significant level of anomalous transport is possibly explained by turbulence. The high ratio and flat density profile present during the experiment yield low thresholds for temperature gradient driven modes that are expected off-axis where the obtained diffusion profile peaks.
The neoclassical transport optimization of the Wendelstein 7-X stellarator has not resulted in the predicted high energy confinement of gas fueled electron-cyclotron-resonance-heated (ECRH) plasmas as modelled in (Turkin et al 2011 Phys. Plasmas 18 022505) due to high levels of turbulent heat transport observed in the experiments. The electron-turbulent-heat transport appears non-stiff and is of the electron temperature gradient (ETG)/ion temperature gradient (ITG) type (Weir et al 2021 Nucl. Fusion 61 056001). As a result, the electron temperature T e can be varied freely from 1 keV-10 keV within the range of P ECRH = 1-7 MW, with electron density n e values from 0.1-1.5 × 10 20 m −3 . By contrast, in combination with the broad electron-to-ion energy-exchange heating profile in ECRH plasmas, ion-turbulent-heat transport leads to clamping of the central ion temperature at T i ∼ 1.5 keV ± 0.2 keV. In a dedicated ECRH power scan at a constant density of n e = 7 × 10 19 m −3 , an apparent 'negative ion temperature profile stiffness' was found in the central plasma for (r/a < 0.5), in which the normalized gradient ∇T i /T i decreases with increasing ion heat flux. The experiment was conducted in helium, which has a higher radiative density limit compared to hydrogen, allowing a broader power scan. This 'negative stiffness' is due to a strong exacerbation of turbulent transport with an increasing ratio of T e /T i in this electron-heated plasma. This finding is consistent with electrostatic microinstabilities, such as ITG-driven turbulence. Theoretical calculations made by both linear and nonlinear gyro-kinetic simulations performed by the GENE code in the W7-X three-dimensional geometry show a strong enhancement of turbulence with an increasing ratio of T e /T i . The exacerbation of turbulence with increasing T e /T i is also found in tokamaks and inherently enhances ion heat transport in electron-heated
A bolometric diagnostic system with features necessary for steady-state operation in the superconducting stellarator W7-X was designed. During a pulse length of 1800 s with an ECRH ͑electron cyclotron resonance heating͒ power of 10 MW, the components suffer not only from a large thermal load but also from stray radiation of the nonabsorbed isotropic microwaves. This paper gives an overview of the technical problems encountered during the design work and the solutions to individual problems to meet the special requirements in W7-X, e.g., component thermal protection, detector offset thermal drift suppression, as well as a microwave shielding technique.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.