We determined the functional effect of the herbal preparation, HemoHIM, on the immune system, by examining the immunomodulatory activities of HemoHIM using immunocompromised mice. In this study, to examine the effect on the restoration of immune cells and balance in the immune system, we utilized a cisplatin-induced immunosuppression mouse model. Mice were injected intraperitoneally with cisplatin, an immunosuppressive anticancer, and then received oral doses of 100, 250, and 500 mg/kg of HemoHIM for 14 days. The HemoHIM prevented the cisplatin-induced loss of body and organ weight. In terms of innate immunity, natural killer (NK) cell activity and phagocytosis increased in the HemoHIM group compared to the cisplatin control group. The HemoHIM group also showed a significantly higher expression of Th1-mediated cytokines (interferon gamma (IFN-γ), interleukin-2 (IL-2), and tumor necrosis factor alpha (TNF-α)) and inhibited the production of Th2-mediated cytokine interleukin-4 (IL-4) compared to cisplatin control group. These findings indicate that HemoHIM enhances immune activity by modulating immune cell activity and cytokine secretion in immune-suppressed mice.
In this study, the hepatoprotective effects of the herbal preparation (HemoHIM) against acetaminopheninduced liver injury were investigated in vitro and in vivo. We investigated the messenger Ribonucleic acid expression of antioxidant factors and proinflammatory cytokines in human hepatocellular carcinoma cells treated with acetaminophen. In vivo study, ICR was divided into five groups (n=10): control, acetaminophen, HemoHIM 250, 500 mg/kg body weight and silymarin 200 mg/kg body weight, respectively. Mice were administrated acetaminophen (350 mg/kg body weight) on d 5 after sample administration. Blood samples were collected for aspartate aminotransferase, alanine transaminase assessment. Liver tissue was determined for glutathione, triglyceride, cholesterol and histopathological features. HemoHIM has significant effects in the treatment groups compared to acetaminophen group.
HemoHIM is a medicinal herbal preparation of Angelica gigas Nakai (Apiaceae), Cnidium officinale Makino (Umbelliferae), and Paeonia lactiflora Pallas (Paeoniaceae) designed for immune regulation. In the present study, the memory-enhancing effects of a standardized extract (HemoHIM) on scopolamine-induced memory impairment in a murine model was investigated. To induce amnesia, scopolamine (1 mg/kg) was intraperitoneally (i.p.) injected into mice 30 min before the start of behavioral tests. The Y-maze, novel object recognition test (NORT), and passive avoidance task (PAT) were used to evoke memory functions. HemoHIM significantly improved scopolamine-induced memory impairment in ICR mice, which was evidenced by an improvement of spontaneous alternation in the Y-maze, recognition index in NORT, and latency time in PAT. To elucidate the possible mechanism, the cholinergic activity and mRNA levels of choline acetyltransferase (ChAT), muscarinic acetylcholine receptor (mAchR), brain-derived neurotrophic factor (BDNF), and cAMP response element-binding protein (CREB) were measured using reverse transcription (RT-PCR) and western blot analyses, respectively. HemoHIM treatment attenuated the scopolamine-induced hyperactivation of acetylcholinesterase (AchE) activity. In addition, ChAT, mAchR, and CREB mRNA levels were increased in the hippocampus compared with the scopolamine group. Furthermore, HemoHIM treatment resulted in elevated BDNF protein expression. These results indicate that HemoHIM may exert antiamnesic activity by increasing Ach and inhibiting AchE in the hippocampus. In addition, HemoHIM has therapeutic potential by upregulating ChAT, mAchR, and BDNF, which is apparently mediated by activation of the CREB and ERK signaling pathways.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.