BackgroundGlucocorticoid has been used extensively in clinical applications, because of its several pharmacologic actions, which include immunosuppression, anti-inflammation, anti-shock, and relief of asthma. However, the long-term or high-dose application of glucocorticoid can induce adverse effects such as osteoporosis, which is known in this case as glucocorticoid-induced osteoporosis (GIOP). It is a secondary osteoporosis that results in easy fracturing, and even disability. Therefore it became a thorny issue.MethodsThe rat model of glucocorticoid-induced osteoporosis (GIOP) was replicated to isolate BMSCs. Rats were assigned into four groups: normal, normal induction, GIOP, and GIOP induction. The growth cycle was monitored by using flow cytometry. Osteogenic differentiation was compared by using alkaline phosphatase (ALP) staining with a modified calcium cobalt method. The quantitative detection of osteoprotegerin and the receptor activator of nuclear factor kappa-B ligand (RANKL) was conducted by using enzyme-linked immunoassay. Finally, renal Klotho mRNA expression was assessed by using RT-PCR.ResultsBMSC proliferation was reduced in GIOP rats. The ALP-positive expression of normal BMSCs to the osteogenic induction solution was stronger than that of BMSCs from GIOP rats (P < 0.01). Osteoprotegerin expression was significantly higher in the normal induction group than in the normal, GIOP (P < 0.01), and GIOP induction groups (P < 0.05). RANKL expression was significantly higher in the normal induction group than in the other groups (P < 0.01) and significantly higher in the normal group than in the GIOP and GIOP induction groups (P < 0.01). RT-PCR analysis showed that renal Klotho mRNA expression was significantly reduced in the GIOP group compared with the normal group (P < 0.01).ConclusionBMSC proliferation, osteogenic differentiation, and reactive activity to an osteogenic inductor were reduced in GIOP rats. Klotho mRNA expression decreased during GIOP induction.
The present study aimed to investigate the effect of kidney-reinforcing and marrow-beneficial traditional Chinese medicine (TCM)-intervened (KRMBTI)-serum on the proliferation and osteogenic differentiation of bone marrow stromal cells (BMSCs) in rats. Rat BMSCs were isolated and cultured in vitro with various concentrations of serum obtained from rats at different time-points following treatment with low, medium and high doses of KRMBT. The alkaline phosphatase (ALP) activity and proliferation of the BMCSs was assessed to determine the optimal serum sampling time-point and serum concentration. Transforming growth factor (TGF)-β1 expression of the BMSCs was detected using enzyme-linked immunosorbent assay (ELISA), and hepcidin mRNA expression in the rat livers was detected using reverse transcription polymerase chain reaction. The proliferation of BMCSs treated with serum obtained l h after dosing was observed to be significantly higher than that for BMCSs treated with serum obtained at the four other time-points (P<0.05). Furthermore, the proliferation following treatment with 25% KRMBTI-serum was significantly higher than that for the other KRMBTI-serum concentrations (P<0.01). For a 25% concentration of the serum collected at l h, the proliferation in the high- and low-dose KRMBTI-serum groups was significantly higher than that of the medium-dose and control groups (P<0.01) and no statistical significance was observed between the high- and low-dose groups. In the osteogenic differentiation process of the high-dose group, the ALP activity at every time-point was significantly higher than that of the low-dose group and the peak value of the former was achieved at concentrations between 20 and 30%. KRMBTI-serum was shown to promote the expression of TGF-β1. Furthermore, hepcidin was observed to be expressed at significantly higher levels in the high-dose group than in the control group, and hepcidin expression was significantly higher after 10 weeks compared with that after five weeks. These findings suggest that KRMBTI-serum increases TGF-β1 and hepcidin expression levels, which may be the mechanism underlying the promotion of osteogenic differentiation induced by KRMBTI-serum in BMSCs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.