The 2'-deoxy (2a) and 2'-ara-fluoro (3a) derivatives of zebularine [1-(beta-D-ribofuranosyl)-dihydropyrimidin-2-one, 1a] were phosphorylated in high yield to the 5'-nucleotides 2b and 3b, respectively, and characterized by HPLC, enzyme degradation, 1H, 13C and 31P NMR, and high resolution mass spectral analysis. Their inhibitory activity against partially purified MOLT-4 deoxycytidylate deaminase (dCMPD) in the presence of the allosteric effector deoxycytidine triphosphate (dCTP) and Mg+2 ion was examined. Compounds 2b and 3b inhibited dCMPD with Ki values of 2.1 x 10(-8) M and 1.2 x 10(-8) M, respectively. The parent nucleotide, zebularine monophosphate 1b was ineffective at concentrations > 100 mumol. The effect of the nucleosides, 1a-3a, as well as tetrahydrouridine (THU) and 2'-deoxy THU (dTHU), on the cellular production of DNA precursors was examined in human MOLT-4 peripheral lymphoblasts. It was shown that 1a, 2a and 3a all elevated intracellular dCTP and TTP levels in whole cells with the most powerful effect elicited by 1a. The 2'-fluoro derivative 3a was chemically phosphorylated much more cleanly and higher yield than 2a, without the formation of diphosphorylated by-products. This compound was found to be infinitely less sensitive to acid-catalyzed degradation than 2a. Since the substitution of fluorine for hydrogen had a slight potentiating effect on the dCMPD inhibitory activity while stabilizing the compound toward acid-catalyzed and enzymatic depyrimidination, compound 3b emerges as a very attractive tool for the pharmacological modulation of pyrimidine deaminase activity.
Cells of the monocyte lineage are important targets for the replication of human immunodeficiency virus (HIV). Our group and others have previously shown that granulocyte-macrophage colony-stimulating factor (GM-CSF) stimulates HIV replication in monocyte/macrophages, but that it also enhances the anti-HIV activity of 2′,3′-dideoxy-3′- azidothymidine (AZT). In the present study, we have explored the effects of other bone marrow stimulatory cytokines on the replication of HIV and on the anti-HIV activity of certain dideoxynucleosides in human peripheral blood monocyte/macrophages (M/M). Like GM-CSF, macrophage CSF (M-CSF) enhanced HIV replication in M/M. In contrast, granulocyte CSF (G-CSF) and erythropoietin (Epo) had no such effects. The anti-HIV activity of zidovudine (AZT) was increased in M/M exposed to GM-CSF. In contrast, the anti-HIV activity of AZT was unchanged in M/M exposed to M-CSF, and the activities of 2′,3′-dideoxycytidine (ddC) and 2′,3′-dideoxyinosine (ddl) were unchanged or slightly diminished in M/M stimulated with GM-CSF or M-CSF. These differential activities of AZT and ddC were paralleled by differential effects of the cytokines on the anabolism of these drugs to their active 5′-triphosphate moieties. GM-CSF increased the levels of AZT-5′-triphosphate (at least in part through an increase in thymidine kinase activity) and overall induced an increase in the ratio of AZT-5′-triphosphate/thymidine-5′- triphosphate. In contrast, M-CSF-induced increases in AZT-5′- triphosphate were roughly matched by increases in thymidine-5′- triphosphate. Also, GM-CSF- or M-CSF-induced increases in the levels of ddC-5′-triphosphate were associated with parallel increases in the levels of deoxycytidine-5′-triphosphate (the physiologic nucleoside that competes at the level of reverse transcriptase), so that there was relatively little net change in the ddC-5′-triphosphate/deoxycytidine- 5′-triphosphate ratio. Thus, bone marrow stimulatory cytokines may have a variety of effects on HIV replication and on the activity and metabolism of dideoxynucleosides in M/M.
In previous studies of purine ribonucleotide metabolism in the human myeloid leukemia cell line HL-60, we observed that there is a down- regulation of guanine ribonucleotide biosynthesis from the central intermediate, inosine monophosphate (IMP) and a depletion of intracellular guanosine triphosphate (GTP) and guanosine diphosphate (GDP) pools that occur during the induced maturation of these cells. We also found that inhibitors of IMP dehydrogenase, the enzyme that catalyzes the first step of guanylate synthesis from IMP, are potent inducers of HL-60 maturation. Because of these observations we specifically investigated the activity of IMP dehydrogenase in HL-60 cells and in a new inducible human myeloid leukemia cell line, RDFD2– 25, both during maintenance culture and during induced maturation of the cells. Enzyme activity was examined directly in cell extracts with a radiometric assay that measures free 3H2O formed from [2–3H] IMP during the conversion of IMP to XMP. Uninduced HL-60 and RDFD2 cells in maintenance culture were found to have high levels of IMPD activity (5.2 to 5.7 pmol IMP metabolized/10(7) cells/min) compared with normal neutrophils and monocytes that had been purified from blood (less than 1.5 pmol IMP metabolized/10(7) cells/min). However, when HL-60 and RDFD2–25 cells were induced to mature with retinoic acid (10(-6) mol/L), dimethylformamide (6 X 10(-2) mol/L), or a known IMPD inhibitor, tiazofurin (10(-6) mol/L), IMPD activity in the cells fell by 51% to 80% within three to six hours. These changes in IMPD activity preceded detectable functional and antigenic maturation of the cells by at least 12 hours and were not temporally related to changes in cellular proliferation. These findings are consistent with the concept that the regulation of myeloid cell maturation may be influenced by intracellular concentrations of guanine ribonucleotides because IMP dehydrogenase activity is known to be rate limiting for the production of these nucleotides.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.