Colloidal semiconductor nanocrystals hold great promise in display technologies, as the tunable energy levels and narrow emission bandwidth allow for wide gamut in color space. Impetus for energy-efficient, high-color-quality display has driven the surge of interest in electrically driven quantum dot-based lightemitting diodes (QD-LEDs). While extensive efforts have led to synthesis of QDs with near-unity photoluminescence quantum yield and fabrication of QD-LEDs with external quantum efficiency reaching to the theoretical limit (∼20%), low out-coupling factor poses a challenge in the way of improving the device performance when spherical QDs are used. Geometrically anisotropic nanocrystals (NCs) such as nanorods or nanoplatelets represent a unique possible solution to enhancing light extraction efficiency. In this Perspective, we highlight important design principles of individual anisotropic NCs and their assembly in the context of LED applications.
We report on the fabrication of a siloxane-encapsulated quantum dot (QD) film (QD-silox film), which exhibits stable emission intensity for over 1 month even at elevated temperature and humidity. QD-silox films are solidified via free radical addition reaction between oligosiloxane resin and ligand molecules on QDs. We prepare the QD-oligosiloxane resin by sol-gel condensation reaction of silane precursors with QDs blended in the precursor solution, forgoing ligand-exchange of QDs. The resulting QD-oligosiloxane resin remains optically clear after 40 days of storage, in contrast to other QD-containing resins which turn turbid and ultimately form sediments. QDs also disperse uniformly in the QD-silox film, whose photoluminescence (PL) quantum yield (QY) remains nearly unaltered under harsh conditions; for example, 85 °C/5% relative humidity (RH), 85 °C/85% RH, strongly acidic, and strongly basic environments for 40 days. The QD-silox film appears to remain equally emissive even after being immersed into boiling water (100 °C). Interestingly, the PL QY of the QD-silox film noticeably increases when the film is exposed to a moist environment, which opens a new, facile avenue to curing dimmed QD-containing films. Given its excellent stability, we envision that the QD-silox film is best suited in display applications, particularly as a PL-type down-conversion layer.
In this study, we report the shape dependence of fluorescence polarization from colloidal CdSe nanoplatelets (NPLs). Despite the symmetry of their cubic unit cell structure, CdSe nanocrystals grow into two-dimensional platelets in the presence of acetate precursors, and the resulting NPLs exhibit polarized emission. The amount of acetate salts introduced during the synthesis plays a critical role in controlling the lateral aspect ratio of CdSe NPLs. Specifically, the more the acetate hydrate presents, the more squarelike face of NPLs emerges. As a result, we achieved CdSe NPLs with varying lateral aspect ratios ranging from 1.1 to 4.5 in our experimental conditions. At the same thickness, CdSe NPLs with higher lateral aspect ratios exhibit higher fluorescence polarization. We analyzed the shape dependence by preparing films of CdSe NPLs dropcast under an electric field and measuring emission and absorption polarizations from CdSe NPL films of known orientation parameters. The emission polarization stays nearly unchanged regardless of shape anisotropy of CdSe NPLs, while the absorption polarization is affected by the lateral aspect ratio. Now that these results allude to a likelihood that absorption polarization is responsible for the shape dependence of fluorescence polarization, we design a model to assess the correlation between the geometry of NPLs and the optical transition polarization by way of the local field effect. Theoretically estimated absorption polarization also shows shape dependence similar to experimental data, which suggests that the anisotropic local field effect is a primary denominator of shape-dependent fluorescence polarization in CdSe NPLs.
The multiple ligands with different functionalities enable atomic-precision control of NCs morphology and subtle inter-NC interactions, which paves the way for novel optoelectronic applications.
Molecular structures of polysaccharide binders determining mechanical properties were correlated to electrochemical performances of silicon anodes for lithium-ion batteries. Glycosidic linkages (α and β) and side chains (-COOH and -OH) were selected and proven as the major factors of the molecular structures. Three different single-component polysaccharides were compared: pectin for α-linkages versus carboxylic methyl cellulose (CMC) for β-linkages from the linkage's standpoint, and pectin as a COOH-containing polymer and amylose as its non-COOH counterpart from the side chain's standpoint. Pectin was remarkably superior to CMC and amylose in cyclability and rate capability of battery cells based on silicon anodes. The pectin binder allowed volume expansion of silicon electrodes with keeping high porosity during lithiation due to the elastic nature caused by the chair-to-boat conformation in α-linkages of its backbone. Physical integrity of pectin-based electrodes was not challenged during repeated lithiation/delithiation cycles without crack development that was observed in rigid CMC-based electrodes. Covalent bonds formed between carboxylic side chains of pectin and silicon surface oxide prevented active silicon mass from being detached away from electric pathways. However, hydrogen bonds between hydroxyl side chains of amylose and silicon surface oxide were not strong enough to keep the silicon mass electrochemically active after cyclability tests.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.