The tip clearance, a compact gap between the inducer blade tip and casing wall, is critical to both the liquid leakage and cavitation-induced forces of a turbopump. In this study, we numerically investigate the effect of tip clearance on the cavitation characteristics of an inducer. Six different tip clearances, 0.1, 0.3, 0.5, 1.0, 1.5, and 2 mm, namely Models A–F, were designed to evaluate the cavitation performance, cavity structure, blade loading, radial force, etc. Model D (1.0 mm) had the relatively highest head coefficient and smallest cavity area on each blade as compared to all other models. The pressure coefficient distribution and blade loading further confirmed that Model D can maintain a higher pressure head and better suppress the cavitation onset than the other models. The radial force signals in the time and frequency domains show that Model D has an intermediate force magnitude with slightly higher noises at the rotating frequency and its harmonic frequencies. Model D also has a relatively smaller vortex region and smaller vortex strength (λ2 criterion). In short, all results show that Model D is the best alternative to balance the complex interactions of the bulk flow and tip leakage flow, compromising the hydraulic head and rotating cavitation.
Rotating cavitation (RC) in inducers mainly degrades performance with unstable radial force. In this paper, the influence of step casings on cavitation performance and the instabilities of inducers were numerically investigated. Firstly, a numerical scheme was validated by means of a comparison with experimental measurements taken for an original inducer (Model O). We then performed simulations with five different step casing models (Models A–E), in which the starting locations and enlargement sizes of the step casings were altered. The interaction between tip leakage flow and main flow in the inter-blade passages was found to highly affected by cavity structure and blade loading. Considering both cavitation performance and radial force, our results suggest that Model E is an alternative improvement. In short, this study provides a standard workflow for the effective suppression of rotating cavitation in inducers by the simple adoption of the step casing configuration presented here in engineering practice.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.