The aim to retrofit and preserve the monumental stone masonry buildings due to their historical and cultural relevance is accompanied by the necessity of understanding the behaviour of the unstrengthen structure, as well as its behaviour after the strengthening systems are applied. There is scarce information related to the mechanical properties of stone masonry buildings and even less regarding the assessment of these characteristics in numerical models. Therefore, simulating the force displacement variation and the stress-strain distribution of stone masonry loaded in diagonal compression is a challenging issue. This work contributes to this topic by developing two detailed micro non-linear 3D models. The first model was designed for an unreinforced masonry (URM) wall and the second one was developed for a strengthened URM wall. For this purpose, a commonly used seismic strengthening system, referred to as reinforced plastering mortar (RPM) or textile reinforced mortar (TRM) was applied on the wall. All the components of the TRM strengthening system and the interfaces between the system and the stone masonry wall were considered in the numerical model. The structural responses of the models were analysed and compared and the TRM system effectiveness in increasing the in-plane load resistance and ductility of stone masonry walls was highlighted.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.