BackgroundMicrovascular invasion (MVI) is a valuable factor for T1 staging renal clear cell carcinoma (ccRCC) operation strategy decision, which is confirmed histopathologically post-operation. This study aimed to prospectively evaluate the performance of arterial spin labeling (ASL) MRI for predicting MVI of T1 staging ccRCC preoperatively.Methods16 volunteers and 39 consecutive patients were enrolled. MRI examinations consisted of ASL (three post label delays separately) of the kidney, followed by T1 and T2-weighted imaging. Two sessions of ASL were used to evaluate the reproducibility on volunteers. Renal blood flow of renal cortex, medulla, the entire and solid part of the tumor were measured on ASL images. Conventional imaging features were extracted. MVI and WHO/ISUP classification were evaluated histopathologically. A paired t‐test was used to compare the renal cortex and medulla between ASL 1 and ASL 2. The reproducibility was assessed using the intraclass correlation. Differences in mean perfusion between the entire and the solid parts of tumors with or without MVI were assessed separately using Student’s t test. The diagnostic performance was assessed. Logistic regression analysis was used to indicate the independent prediction index for MVI.ResultsThe two sessions of ASL showed no significant difference between the mean cortex values of RBF. The cortical RBF measurements demonstrated good agreement. 12 ccRCCs presented with MVI histopathologically. Mean perfusion of the solid part of tumors with MVI were 536.4 ± 154.8 ml/min/100 g (PLD1), 2912.5 ± 939.3 ml/min/100 g (PLD2), 3280.3 ± 901.2 ml/min/100 g (PLD3). Mean perfusion of the solid part of tumors without MVI were 453.5 ± 87.2 ml/min/100 g (PLD1), 1043.6 ± 695.8 ml/min/100 g (PLD2), 1577.6 ± 1085.8 ml/min/100 g (PLD3). These two groups have significant difference at all the PLDs (p < 0.05). The RBF of PLD1 of the solid part of tumor perfusion showed well diagnostic performance for predicting MVI: sensitivity 75%, specificity 100%, positive predictive value 66.7%, and negative predictive value 95.7%. The maximum diameter of the tumor, ill-defined margin, and the solid part of tumor perfusion were the independent prediction index for MVI.ConclusionASL MR imaging has good reproducibility for renal cortex, and good diagnostic performance for predicting MVI for ccRCC.
Background: Detection of microvascular invasion (MVI) of kidney tumors is important for selecting the optimal therapeutic strategy. Currently, the prediction of MVI lacks an accurate imaging biomarker.This study evaluated the performance of three-dimensional (3D) magnetic resonance elastography (MRE) imaging in predicting microvascular invasion (MVI) of T1 stage clear cell renal carcinoma (ccRCC).Methods: In this prospective study, we conducted pre-surgical imaging with a clinical 3.0 T magnetic resonance imaging (MRI) system. Firstly, 83 consecutive patients were enrolled in this study. A 3D MRE stiffness map was generated and transferred to a post-processing workstation. Contrast-enhanced computed tomography (CT) was conducted to calculate the tumor enhancement ratio. The presence of MVI was evaluated by histopathological analysis and graded according to the risk stratification based upon the number and distribution. The mean stiffness and CT tumor enhancement ratio was calculated for tumors with or without MVI. The diagnostic performance [sensitivity, specificity, positive predictive value, negative predictive value, area under the curve (AUC)] and independent predicting factors for MVI were investigated.Results: Finally, A total of 80 patients (aged 46.7±13.2 years) were enrolled, including 22 cases of tumors with MVI. The mean MRE stiffness of kidney parenchyma and kidney tumors was 4.8±0.2 and 4.5±0.7 kPa, respectively. There was significant difference in the mean MRE stiffness between tumors with MVI (5.4±0.6 kPa) and tumors without MVI (4.1±0.3 kPa) (P<0.05). The sensitivity, specificity, positive predictive value, negative predictive value, and the AUC for mean stiffness in the prediction of MVI were 100%, 75%, 63%, 96%, and 0.87 [95% confidence interval (CI): 0.72, 0.94], respectively. The corresponding values for the CT tumor enhancement ratio were 90%, 80%, 63%, 96%, and 0.88 (95% CI: 0.71, 0.93), respectively. The odds ratio (OR) value for MRE tumor stiffness and CT kidney tumor enhancement ratio in the prediction of MVI was 2.9 (95% CI: 1.8, 3.7) and 1.2 (95% CI: 1.0, 1.7), respectively (P>0.05).Conclusions: 3D MRE imaging has promising diagnostic performance for predicting MVI in T1 stage ccRCC, which may improve the reliability of surgical strategy selection with T1 stage ccRCC.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.