The performance of existing signal detection methods depends heavily on the amount of prior information acquired by the sensor of interest. Therefore, to improve cognitive radio-based detection in lowsignal-to-noise (SNR) environments, we propose a deep learning method-based passive signal detection. A convolution neural network (CNN) and the long short-term memory (LSTM) approach are used to extract the frequency and time domain features of the signal. Our method can detect signal when little to none prior information exists. The simulation experiments verify the probability of detection for our method. The results show that our method is about 4.5-5.5 dB better than a traditional blind detection algorithm under different SNR environments. INDEX TERMSCognitive radio, deep learning, signal detection.
Deep learning (DL)-based specific emitter identification (SEI) technique can automatically extract radio frequency (RF) fingerprint features in RF signals to distinguish between legal and illegal devices and enhance the security of wireless network. However, deep neural network (DNN) can easily be fooled by adversarial examples or perturbations of the input data. If a malicious device emits signals containing a specially designed adversarial samples, will the DL-based SEI still work stably to correctly identify the malicious device? To the best of our knowledge, this research is still blank, let alone the corresponding defense methods. Therefore, this paper designs two scenarios of attack and defense and proposes the corresponding implementation methods to specializes in the robustness of DL-based SEI under adversarial attacks. On this basis, detailed experiments are carried out based on the real-world data and simulation data. The attack scenario is that the malicious device adds an adversarial perturbation signal specially designed to the original signal, misleading the original system to make a misjudgment. Experiments based on three different attack generation methods show that DL-based SEI is very vulnerability. Even if the intensity is very low, without affecting the probability density distribution of the original signal, the performance can be reduced to about 50%, and at −22 dB it is completely invalid. In the defense scenario, the adversarial training (AT) of DL-based SEI is added, which can significantly improve the system’s performance under adversarial attacks, with ≥60% improvement in the recognition rate compared to the network without AT. Further, AT has a more robust effect on white noise. This study fills the relevant gaps and provides guidance for future research. In the future research, the impact of adversarial attacks must be considered, and it is necessary to add adversarial training in the training process.
Integrating cognitive radio (CR) technique with wireless networks is an effective way to solve the increasingly crowded spectrum. Automatic modulation classification (AMC) plays an important role in CR. AMC significantly improves the intelligence of CR system by classifying the modulation type and signal parameters of received communication signals. AMC can provide more information for decision making of the CR system. In addition, AMC can help the CR system dynamically adjust the modulation type and coding rate of the communication signal to adapt to different channel qualities, and the AMC technique help eliminate the cost of broadcast modulation type and coding rate. Deep learning (DL) has recently emerged as one most popular method in AMC of communication signals. Despite their success, DL models have recently been shown vulnerable to adversarial attacks in pattern recognition and computer vision. Namely, they can be easily deceived if a small and carefully designed perturbation called an adversarial attack is imposed on the input, typically an image in pattern recognition. Owing to the very different nature of communication signals, it is interesting yet crucially important to study if adversarial perturbation could also fool AMC. In this paper, we make a first attempt to investigate how we can design a special adversarial attack on AMC. we start from the assumption of a linear binary classifier which is further extended to multi-way classifier. We consider the minimum power consumption that is different from existing adversarial perturbation but more reasonable in the context of AMC. We then develop a novel adversarial perturbation generation method that leads to high attack success to communication signals. Experimental results on real data show that the method is able to successfully spoof the 11-class modulation classification at a model with a minimum cost of about − 21 dB in automatic modulation classification task. The visualization results demonstrate that the adversarial perturbation manifests in the time domain as imperceptible undulations of the signal, and in the frequency domain as small noise outside the signal band.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.