Massive star-forming regions with observed infall motions are good sites for studying the birth of massive stars. In this paper, 405 compact sources have been extracted from the APEX Telescope Large Area Survey of the Galaxy (ATLASGAL) compact sources that also have been observed in the Millimetre Astronomy Legacy Team 90 GHz (MALT90) survey during Years 1 and 2. These observations are complemented with Spitzer GLIMPSE/MIPSGAL mid-IR survey data to help classify the elected starforming clumps into three evolutionary stages: pre-stellar, proto-stellar and UCHII regions. The results suggest that 0.05 g cm −2 is a reliable empirical lower bound for the clump surface densities required for massive-star formation to occur. The optically thick HCO + (1-0) and HNC(1-0) lines, as well as the optically thin N 2 H + (1-0) line were used to search for infall motions toward these sources. By analyzing the asymmetries of the optically thick HCO + (1-0) and HNC(1-0) lines and the mapping observations of HCO + (1-0), a total of 131 reliable infall candidates have been identified. The HCO + (1-0) line shows the highest occurrence of obvious asymmetric features, suggesting that it may be a better infall motion tracer than other lines such as HNC(1-0). The detection rates of infall candidates toward pre-stellar, proto-stellar and UCHII clumps are 0.3452, 0.3861 and 0.2152, respectively. The relatively high detection rate of infall candidates toward UCHII clumps indicates that many UCHII regions are still accreting matter. The peak column densities and masses of the infall candidates, in general, display a increasing trend with progressing evolutionary stages. However, the rough estimates of the mass infall rate show no obvious variation with evolutionary stage.
In this work, we aim to characterise high-mass clumps with infall motions. We selected 327 clumps from the Millimetre Astronomy Legacy Team 90-GHz (MALT90) survey, and identified 100 infall candidates. Combined with the results of He et al. (2015), we obtained a sample of 732 high-mass clumps, including 231 massive infall candidates and 501 clumps where infall is not detected. Objects in our sample were classified as pre-stellar, proto-stellar, HII or photo-dissociation region (PDR). The detection rates of the infall candidates in the pre-stellar, proto-stellar, HII and PDR stages are 41.2%, 36.6%, 30.6% and 12.7%, respectively. The infall candidates have a higher H 2 column density and volume density compared with the clumps where infall is not detected at every stage. For the infall candidates, the median values of the infall rates at the pre-stellar, proto-stellar, HII and PDR stages are 2.6×10 −3 , 7.0×10 −3 , 6.5×10 −3 and 5.5×10 −3 M yr −1 , respectively. These values indicate that infall candidates at later evolutionary stages are still accumulating material efficiently. It is interesting to find that both infall candidates and clumps where infall is not detected show a clear trend of increasing mass from the pre-stellar to proto-stellar, and to the HII stages. The power indices of the clump mass function (ClMF) are 2.04±0.16 and 2.17±0.31 for the infall candidates and clumps where infall is not detected, respectively, which agree well with the power index of the stellar initial mass function (2.35) and the cold Planck cores (2.0).
Aims. The process of gravitational fragmentation in the L1482 molecular filament of the California molecular cloud is studied by combining several complementary observations and physical estimates. We investigate the kinematic and dynamical states of this molecular filament and physical properties of several dozens of dense molecular clumps embedded therein.Methods. We present and compare molecular line emission observations of the J = 2−1 and J = 3−2 transitions of 12 CO in this molecular complex, using the Kölner Observatorium für Sub-Millimeter Astronomie (KOSMA) 3-m telescope. These observations are complemented with archival data observations and analyses of the 13 CO J = 1−0 emission obtained at the Purple Mountain Observatory (PMO) 13.7-m radio telescope at Delingha Station in QingHai Province of west China, as well as infrared emission maps from the Herschel Space Telescope online archive, obtained with the SPIRE and PACS cameras. Comparison of these complementary datasets allows for a comprehensive multiwavelength analysis of the L1482 molecular filament. Results. We have identified 23 clumps along the molecular filament L1482 in the California molecular cloud. For these molecular clumps, we were able to estimate column and number densities, masses, and radii. The masses of these clumps range from ∼6.8 to 62.8 M with an average value of 24.7 +31.1 −16.2 M . Eleven of the identified molecular clumps appear to be associated with protostars and are thus referred to as protostellar clumps. Protostellar clumps and the remaining starless clumps of our sample appear to have similar temperatures and linewidths, yet on average, the protostellar clumps appear to be slightly more massive than the latter. All these molecular clumps show supersonic nonthermal gas motions. While surprisingly similar in mass and size to the much better known Orion molecular cloud, the formation rate of high-mass stars appears to be suppressed in the California molecular cloud compared with that in the Orion molecular cloud based on the mass-radius threshold derived from the static Bonnor-Ebert sphere. The largely uniform 12 CO J = 2−1 line-of-sight velocities along the L1482 molecular cloud shows that it is a generally coherent filamentary structure. Since the NGC 1579 stellar cluster is at the junction of two molecular filaments, the origin of the NGC 1579 stellar cluster might be merging molecular filaments fed by converging inflows. Our analysis suggests that these molecular filaments are thermally supercritical and molecular clumps may form by gravitational fragmentation along the filament. Instead of being static, these molecular clumps are most likely in processes of dynamic evolution.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.