The frequency and severity of extreme weather events are increasing and expected to increase more in the future, together with global change. However, how extreme events and global change factors interactively influence community structures and ecosystem processes is largely unknown. Here, we investigated the responses of the temporal stability and resilience of aboveground net primary productivity (ANPP) of an alpine meadow to an extreme flooding event under different treatments of experimental drought and clipping. We found that ecosystems that were exposed to drought treatments for 3 years significantly decreased the temporal stability of community productivity but increased resilience to flooding, whereas their resistance to or recovery from flooding did not change.Neither clipping nor its interaction with drought altered the responses of these community stability metrics to flooding. Drought treatments significantly decreased plant species richness and asynchrony and dominant species stability, leading to a decrease in temporal stability and an increase in resilience in response to the extreme flooding event. The study also revealed that the change in species asynchrony was the dominant impact pathway determining the responses of resilience and temporal stability to flooding. Our results highlight that alpine grassland that experiences a multiyear drought may aggravate the instability of community productivity to extreme climatic events by reducing species asynchrony.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.