Owing to increasing global temperatures, heat stress is a major problem affecting dairy cows, and abnormal metabolic responses during heat stress likely influence dairy cow immunity. However, the mechanism of this crosstalk between metabolism and immunity during heat stress remains unclear. We used two representative dairy cow breeds, Holstein and Jersey, with distinct heat-resistance characteristics. To understand metabolic and immune responses to seasonal changes, normal environmental and high-heat environmental conditions, we assessed blood metabolites and immune cell populations. In biochemistry analysis from sera, we found that variety blood metabolites were decreased in both Holstein and Jersey cows by heat stress. We assessed changes in immune cell populations in peripheral blood mononuclear cells (PBMCs) using flow cytometry. There were breed-specific differences in immune-cell population changes. Heat stress only increased the proportion of B cells (CD4–CD21+) and heat stress tended to decrease the proportion of monocytes (CD11b+CD172a+) in Holstein cows. Our findings expand the understanding of the common and specific changes in metabolism and immune response of two dairy cow breeds under heat stress conditions.
Study Objectives: Younger children and adolescents are exposed to various smart devices in the modern world, and their use of smart devices is rapidly increasing worldwide. Although smart devices have often been considered to have negative effects on sleep of children and adolescents, such effects have not been studied among younger children. Sleep is considered particularly important for learning and memory, and also has implications for emotional regulation and behavior. Therefore, this study was conducted to examine the effects of smartphone overuse on sleep in 5-to 8-year-old children. Methods: Participants were from the Kids Cohort for Understanding of Internet Addiction Risk Factors in Early Childhood (K-CURE) Study, an observational prospective cohort study in Korea. Smartphone screen time and total sleep time were assessed using parental questionnaires. Sleep problems of children were assessed using the Children's Sleep Habits Questionnaire (CSHQ). Analysis of covariance was used to examine the association between smartphone overuse and sleep habits in children. All statistical analyses were conducted using SPSS version 21.0 (IBM Corporation, Armonk, NY). Results: Total sleep time of the smartphone overuse group (smartphone use over 1 hour daily) was shorter than that of the control group (F = 6.362, P <.05). Children in the smartphone overuse group showed statistically significant higher scores in the CSHQ total score and nocturnal awakening subscale score (P <.05). Conclusions: Excessive smartphone use was related to shorter total sleep time in children. Use of a smartphone was also associated with significant reductions in the quality of sleep in younger children.
Heat stress has detrimental effects on livestock via diverse immune and physiological changes; heat-stressed animals are rendered susceptible to diverse diseases. However, there is relatively little information available regarding the altered immune responses of domestic animals in heat stress environments, particularly in cattle steers. This study aimed to determine the changes in the immune responses of Holstein and Jersey steers under heat stress. We assessed blood immune cells and their functions in the steers of two breeds under normal and heat stress conditions and found that immune cell proportions and functions were altered in response to different environmental conditions. Heat stress notably reduced the proportions of CD21+MHCII+ B cell populations in both breeds. We also observed breed-specific differences. Under heat stress, in Holstein steers, the expression of myeloperoxidase was reduced in the polymorphonuclear cells, whereas heat stress reduced the WC1+ γδ T cell populations in Jersey steers. Breed-specific changes were also detected based on gene expression. In response to heat stress, the expression of IL-10 and IL-17A increased in Holstein steers alone, whereas that of IL-6 increased in Jersey steers. Moreover, the mRNA expression pattern of heat shock protein genes such as Hsp70 and Hsp90 was significantly increased in only Holstein steers. Collectively, these results indicate that altered blood immunological profiles may provide a potential explanation for the enhanced susceptibility of heat-stressed steers to disease. The findings of this study provide important information that will contribute to developing new strategies to alleviate the detrimental effects of heat stress on steers.
Heat stress has been reported to affect the immunity of dairy cows. However, the mechanisms through which this occurs are not fully understood. Two breeds of dairy cow, Holstein and Jersey, have distinct characteristics, including productivity, heat resistance, and disease in high-temperature environments. The objective of this study is to understand the dynamics of the immune response of two breeds of dairy cow to environmental change. Ribonucleic acid sequencing (RNA-seq) results were analyzed to characterize the gene expression change of peripheral blood mononuclear cells (PBMCs) in Holstein and Jersey cows between moderate temperature-humidity index (THI) and high THI environmental conditions. Many of the differentially expressed genes (DEGs) identified are associated with critical immunological functions, particularly phagocytosis, chemokines, and cytokine response. Among the DEGs, CXCL3 and IL1A were the top down-regulated genes in both breeds of dairy cow, and many DEGs were related to antimicrobial immunity. Functional analysis revealed that cytokine and chemokine response-associated pathways in both Holstein and Jersey PBMCs were the most important pathways affected by the THI environmental condition. However, there were also breed-specific genes and pathways that altered according to THI environmental condition. Collectively, there were both common and breed-specific altered genes and pathways in Holstein and Jersey cows. The findings of this study expand our understanding of the dynamics of immunity in different breeds of dairy cow between moderate THI and high THI environmental conditions.
The Transgenic livestock can be useful for the production of diseaseresistant animals, pigs for xenotranplantation, animal bioreactor for therapeutic recombinant proteins and disease model animals. Previously, conventional methods without using artificial nuclease-dependent DNA cleavage system were used to produce such transgenic livestock, but their efficiency is known to be low. In the last decade, the development of artificial nucleases such as zinc-finger necleases (ZFNs), transcription activator-like effector nucleases (TALENs) and clustered regulatory interspaced short palindromic repeat (CRISPR)/Cas has led to more efficient production of knockout and knock-in transgenic livestock. However, production of knock-in livestock is poor. In mouse, genetically modified mice are produced by coinjecting a pair of knock-in vector, which is a donor DNA, with a artificial nuclease in a pronuclear fertilized egg, but not in livestock. Gene targeting efficiency has been increased with the use of artificial nucleases, but the knock-in efficiency is still low in livestock. In many research now, somatic cell nuclear transfer (SCNT) methods used after selection of cell transfected with artificial nuclease for production of transgenic livestock. In particular, it is necessary to develop a system capable of producing transgenic livestock more efficiently by co-injection of artificial nuclease and knock-in vectors into fertilized eggs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.