Ceramic membrane condensers that are used for water and waste heat recovery from flue gas have the dual effects of saving water resources and improving energy efficiency. However, most ceramic membrane condensers use water as the cooling medium, which can obtain a higher water recovery flux, but the waste heat temperature is lower, which is difficult to use. This paper proposes to use the secondary boiler air as the cooling medium, build a ceramic membrane condenser with negative pressure air to recover water and waste heat from the flue gas, and analyze the transfer characteristics of flue gas water and waste heat in the membrane condenser. Based on the experimental results, it is technically feasible for the ceramic membrane condenser to use negative pressure air as the cooling medium. The flue gas temperature has the most obvious influence on the water and heat transfer characteristics. The waste heat recovery is dominated by latent heat of water vapor, accounting for 80% or above. The negative pressure air outlet temperature of the ceramic membrane condenser can reach 50.5 °C, and it is in a supersaturated state. The research content of this article provides a new idea for the water and waste heat recovery from flue gas.
The direct discharge of wet saturated flue gas from a coal-fired power plant boiler causes a lot of water and waste heat loss. An inorganic ceramic membrane condenser recovers water and waste heat from the flue gas, which has great significance to improve energy utilization efficiency and reduce water consumption. However, the flue gas temperature is relatively low; thus, it is difficult to effectively utilize waste heat. In this paper, it is attempted to use the boiler secondary air as the cooling medium of the ceramic membrane condenser to realize the flue gas waste heat reuse. Based on the above ideas, a purge gas ceramic membrane condenser experimental platform was built for the water and waste heat recovery from the flue gas, and the water and waste heat recovery characteristics and the purge gas outlet parameters were discussed. Simultaneously, the heat transfer resistance and water recovery power consumption are also analyzed. The experimental results show that the water and waste heat recovery characteristics are enhanced with the purge gas flow increases. Increasing the flue gas temperature will increase the water recovery rate and heat recovery power. The ceramic membrane transmission efficiency is a key factor in restricting the actual water recovery efficiency. The purge gas absorbs the water and waste heat from the flue gas, the purge gas temperature and moisture content are significantly increased, and the purge gas relative humidity is also close to saturation. The Biot number of the ceramic membrane condenser is about 3.2 × 10 −3 to 1.9 × 10 −2 ; thus, the ceramic membrane tube wall thermal resistance can be neglected. There is a temperature difference between the flue gas and the purge gas, and the entropy production value of the ceramic membrane condenser increases with the flue gas temperature increases by the irreversible process.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.