Existing learning-based atmospheric particle-removal approaches such as those used for rainy and hazy images are designed with strong assumptions regarding spatial frequency, trajectory, and translucency. However, the removal of snow particles is more complicated because they possess additional attributes of particle size and shape, and these attributes may vary within a single image. Currently, hand-crafted features are still the mainstream for snow removal, making significant generalization difficult to achieve. In response, we have designed a multistage network named DesnowNet to in turn deal with the removal of translucent and opaque snow particles. We also differentiate snow attributes of translucency and chromatic aberration for accurate estimation. Moreover, our approach individually estimates residual complements of the snow-free images to recover details obscured by opaque snow. Additionally, a multi-scale design is utilized throughout the entire network to model the diversity of snow. As demonstrated in the qualitative and quantitative experiments, our approach outperforms state-of-the-art learning-based atmospheric phenomena removal methods and one semantic segmentation baseline on the proposed Snow100K dataset. The results indicate our network would benefit applications involving computer vision and graphics.
Images are often corrupted by natural obscuration (e.g., snow, rain, and haze) during acquisition in bad weather conditions. The removal of snowflakes from only a single image is a challenging task due to situational variety and has been investigated only rarely. In this article, we propose a novel snow removal framework for a single image, which can be separated into a sparse image approximation module and an adaptive tolerance optimization module. The first proposed module takes the advantage of sparsity-based regularization to reconstruct a potential snow-free image. An auto-tuning mechanism for this framework is then proposed to seek a better reconstruction of a snow-free image via the time-varying inertia weight particle swarm optimizers in the second proposed module. Through collaboration of these two modules iteratively, the number of snowflakes in the reconstructed image is reduced as generations progress. By the experimental results, the proposed method achieves a better efficacy of snow removal than do other state-of-the-art techniques via both objective and subjective evaluations. As a result, the proposed method is able to remove snowflakes successfully from only a single image while preserving most original object structure information.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.