This paper is concerned with description of the existence and the forms of entire solutions of several second-order partial differential-difference equations with more general forms of Fermat type. By utilizing the Nevanlinna theory of meromorphic functions in several complex variables we obtain some results on the forms of entire solutions for these equations, which are some extensions and generalizations of the previous theorems given by Xu and Cao (Mediterr. J. Math. 15:1–14, 2018; Mediterr. J. Math. 17:1–4, 2020) and Liu et al. (J. Math. Anal. Appl. 359:384–393, 2009; Electron. J. Differ. Equ. 2013:59–110, 2013; Arch. Math. 99:147–155, 2012). Moreover, by some examples we show the existence of transcendental entire solutions with finite order of such equations.
Under a certain condition, we propose a uniqueness theorem about meromorphic functions sharing four distinct small functions on an annulus. Two counter examples are given in order to show the certain condition is necessary. Our results generalize or improve the previous theorems due to T. B. Cao et al. and N. Wu et al.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.