This study aimed to develop a new multiplex real-time PCR detection method for 3 species of waterborne protozoan parasites (Cryptosporidium parvum, Giardia lamblia, and Cyclospora cayetanensis) identified as major causes of traveler’s diarrhea. Three target genes were specifically and simultaneously detected by the TaqMan probe method for multiple parasitic infection cases, including Cryptosporidium oocyst wall protein for C. parvum, glutamate dehydrogenase for G. lamblia, and internal transcribed spacer 1 for C. cayetanensis. Gene product 21 for bacteriophage T4 was used as an internal control DNA target for monitoring human stool DNA amplification. TaqMan probes were prepared using 4 fluorescent dyes, FAM™, HEX™, Cy5™, and CAL Fluor Red® 610 on C. parvum, G. lamblia, C. cayetanensis, and bacteriophage T4, respectively. We developed a novel primer-probe set for each parasite, a primer-probe cocktail (a mixture of primers and probes for the parasites and the internal control) for multiplex real-time PCR analysis, and a protocol for this detection method. Multiplex real-time PCR with the primer-probe cocktail successfully and specifically detected the target genes of C. parvum, G. lamblia, and C. cayetanensis in the mixed spiked human stool sample. The limit of detection for our assay was 2×10 copies for C. parvum and for C. cayetanensis, while it was 2×103 copies for G. lamblia. We propose that the multiplex real-time PCR detection method developed here is a useful method for simultaneously diagnosing the most common causative protozoa in traveler’s diarrhea.
This study aimed to develop a multiplex-touchdown PCR method to simultaneously detect 3 species of protozoan parasites, i.e., Cryptosporidium parvum, Giardia lamblia, and Cyclospora cayetanensis, the major causes of traveler’s diarrhea and are resistant to standard antimicrobial treatments. The target genes included the Cryptosporidium oocyst wall protein for C. parvum, Glutamate dehydrogenase for G. lamblia, and 18S ribosomal RNA (18S rRNA) for C. cayetanensis. The sizes of the amplified fragments were 555, 188, and 400 bps, respectively. The multiplex-touchdown PCR protocol using a primer mixture simultaneously detected protozoa in human stools, and the amplified gene was detected in >1×103 oocysts for C. parvum, >1×104 cysts for G. lamblia, and >1 copy of the 18S rRNA gene for C. cayetanensis. Taken together, our protocol convincingly demonstrated the ability to simultaneously detect C. parvum, G. lamblia, and C. cayetanenesis in stool samples.
ObjectivesUntil the early 2000s, lymphatic filariasis would commonly break out in the coastal areas in Korea. Through steady efforts combining investigation and treatment, filariasis was officially declared eradicated in 2008. This study surveyed the density of vector species of filariasis in past endemic areas, and inspected filariasis DNA from collected mosquitoes for protection against the reemergence of filariasis.MethodsBetween May and October 2009, mosquitoes were caught using the black night trap in past endemic coastal areas: Gyeongsangnam-do, Jeollanamdo, and Jeju-do. The collected mosquitoes were identified, and the extracted DNA from the collected vector mosquitoes was tested by polymerase chain reaction for Brugia malayi filariasis.ResultsOchletotatus togoi, Anophel es (Hyrcanus) group and Culex pipiens were most frequently caught in Jeollanam-do (Geomun Island, Bogil Island, Heuksan Island), Jeju-do (Namone-ri, Wimi-ri). and Gyeongsangnam-do (Maemul Island). DNA of B malayi was not found in Och Togoi and An (Hyrcanus) group as main vectors of filariasis.ConclusionLymphatic filariasis was not found in the vector mosquitoes collected in past endemic areas. However, considering that the proportion of vector species is quite high, there is a potential risk that filariasis could be reemerging through overseas travel or trade. Thus, there is a need to continuously monitor vector mosquitoes of lymphatic filariasis.
ObjectivesKorea was an endemic area for lymphatic filariasis (LF), caused by the nematode parasite Brugia malayi, until the 1970s. The World Health Organization recognized Korea as LF-free in June 2008. However, it is necessary to confirm that patients that have had LF in the past still test negative, to prevent the re-emergence of LF in Korea.MethodsWe followed up a total of 83 patients who had been diagnosed with LF between 2002 and 2010 in endemic LF areas.ResultsFifty-two of the 83 subjects were negative for LF, whereas 31 subjects had re-located to a different city or province, were dead, or were unaccounted for. Most subjects with negative test results still exhibited edema in the legs or the arms, and some complained of redness and swelling in the legs or ankle joints. However, we found that these symptoms were due to diseases other than LF.ConclusionIn this follow-up study, we did not find any evidence indicating the potential re-emergence of LF in Korea.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.