Users may download and print one copy of any publication from the public portal for the purpose of private study or research. You may not further distribute the material or use it for any profit-making activity or commercial gain You may freely distribute the URL identifying the publication in the public portal If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.
This paper proposes a multi-source multi-product framework for coupled multi-carrier energy supplies with a biogas-solar-wind hybrid renewable system. In this framework, the biogas-solar-wind complementarities are fully exploited based on digesting thermodynamic effects for the synergetic interactions of electricity, gas and heating energy flows, and a coupling matrix is formulated for the modeling of production, conversion, storage, and consumption of different energy carriers. The multi-energy complementarity of biogas-solar-wind renewable portfolio can be utilized to facilitate the mitigation of renewable intermittency and the efficient utilization of batteries, and a multi-carrier generation scheduling scheme is further presented to dynamically optimize dispatch factors in the coupling matrix for energy-efficient conversion and storage, while different energy demands of end-users are satisfied. The proposed methodology has been fully tested and benchmarked on a stand-alone Microgrid over a 24-hour scheduling horizon. Comparative results demonstrate that the proposed scheme can lower the battery charging/discharging actions as well as the degradation cost, and also confirm its capability to accommodate high penetration of variable renewables. Index Terms-Energy hub, energy storage, renewable energy, Microgrid, multi-energy systems. . His main fields of research include smart grid operation and planning, renewable energy generation, and energy efficiency. Da Xu received the B.Sc. degree in automation . His research interests include power system stability, control, planning and operation, computational intelligence applications, and electric vehicle charging. Yijia Cao (M'98-SM'13) received the B.Sc. degree in electrical engineering from Xi'an Jiaotong University, Xi'an, China, in 1988, and the Ph.D. degree His research interests include power system cascading failure, smart grid information technology, smart grid operation and optimization. Ka Wing Chan (M'98) received the B.Sc. (with First Class Honors) and Ph.D. degrees in electronic and electrical engineering from the University of Bath, Bath, U.K., in 1988 and 1992, respectively. He currently is an Associate Head and Associate Professor in the Department of Electrical Engineering of The Hong Kong Polytechnic University. His general research interests include smart grid and renewable energy, power system stability analysis and control, power system planning and optimization, real-time power system simulation. Qiuwei Wu (M'08-SM'15) received the B.Eng. and M.Eng. degrees from
Abstract-This paper proposes a distributed multi-energy management framework for the coordinated operation of interconnected biogas-solar-wind microgrids. In this framework, each microgrid not only schedules its local hybrid biogas-solar-wind renewables for coupled multi-carrier energy supplies based on the concept of energy hub, but also exchanges energy with interconnected microgrids and via the transactive market. The multi-microgrid scheduling is a challenging optimization problem due to its severe constraints and strong couplings. A multi-microgrid multi-energy coupling matrix is thus formulated to model and exploit the inherent biogas-solar-wind energy couplings among electricity, gas and heat flows. Furthermore, a distributed stochastic optimal scheduling scheme with minimum information exchange overhead is proposed to dynamically optimize energy conversion and storage devices in the multi-microgrid system. The proposed method has been fully tested and benchmarked on different scaled multi-microgrid system over a 24-hour scheduling horizon. Comparative results demonstrated that the proposed approach can reduce the system operating cost and enhance the system energy-efficiency, and also confirm its scalability in solving large-scale multi-microgrid problems.
ObjectiveDiabetic nephropathy (DN) is a serious complication that commonly confronted by diabetic patients. A common theory for the pathogenesis of this renal dysfunction in diabetes is cell injury, inflammation as well as oxidative stress. In this content, the detailed molecular mechanism underlying high glucose induced renal tubular epithelial injury was elaborated.MethodsAn in vivo rat model of diabetes by injecting streptozotocin (STZ) and an in vitro high glucose incubated renal tubular epithelial cell (HK-2) model were used. Expression levels of Keap1, nuclear Nrf2 and p65 were determined by western blotting. Level of microR-29 (miR-29) was assessed using quantitative RT-PCR. Combination of p65 and miR-29 promotor was assessed using chromatin immunoprecipitation. Keap1 3′-UTR activity was detected using luciferase reporter gene assay. Cell viability was determined using MTT assay.ResultsIn diabetic rat, miR-29 was downregulated and its expression is negatively correlated with both of serum creatinine and creatinine clearance. In high glucose incubated HK-2 cell, deacetylases activity of Sirt1 was attenuated that leads to decreased activity of nuclear factor kappa B (NF-κB). NF-κB was demonstrated to regulate miR-29 expression by directly binding to its promotor. The data of luciferase assay showed that miR-29 directly targets to Keap1 mRNA. While high glucose induced down regulation of miR-29 contributed to enhancement of Keap1 expression that finally reduced Nrf2 content by ubiquitinating Nrf2. Additionally, overexpression of miR-29 effectively relieved high glucose-reduced cell viability.ConclusionHigh glucose induces renal tubular epithelial injury via Sirt1/NF-κB/microR-29/Keap1 signal pathway.Electronic supplementary materialThe online version of this article (doi:10.1186/s12967-015-0710-y) contains supplementary material, which is available to authorized users.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.