In this work, we introduce the new scene understanding task of Part-aware Panoptic Segmentation (PPS), which aims to understand a scene at multiple levels of abstraction, and unifies the tasks of scene parsing and part parsing. For this novel task, we provide consistent annotations on two commonly used datasets: Cityscapes and Pascal VOC. Moreover, we present a single metric to evaluate PPS, called Part-aware Panoptic Quality (PartPQ). For this new task, using the metric and annotations, we set multiple baselines by merging results of existing state-of-the-art methods for panoptic segmentation and part segmentation. Finally, we conduct several experiments that evaluate the importance of the different levels of abstraction in this single task.
In this work, we present an end-to-end network for fast panoptic segmentation. This network, called Fast Panoptic Segmentation Network (FPSNet), does not require computationally costly instance mask predictions or merging heuristics. This is achieved by casting the panoptic task into a custom dense pixel-wise classification task, which assigns a class label or an instance id to each pixel. We evaluate FPSNet on the Cityscapes and Pascal VOC datasets, and find that FPSNet is faster than existing panoptic segmentation methods, while achieving better or similar panoptic segmentation performance. On the Cityscapes validation set, we achieve a Panoptic Quality score of 55.1%, at prediction times of 114 milliseconds for images with a resolution of 1024x2048 pixels. For lower resolutions of the Cityscapes dataset and for the Pascal VOC dataset, FPSNet runs at 22 and 35 frames per second, respectively.
In this work, we propose a single deep neural network for panoptic segmentation, for which the goal is to provide each individual pixel of an input image with a class label, as in semantic segmentation, as well as a unique identifier for specific objects in an image, following instance segmentation. Our network makes joint semantic and instance segmentation predictions and combines these to form an output in the panoptic format. This has two main benefits: firstly, the entire panoptic prediction is made in one pass, reducing the required computation time and resources; secondly, by learning the tasks jointly, information is shared between the two tasks, thereby improving performance. Our network is evaluated on two street scene datasets: Cityscapes and Mapillary Vistas. By leveraging information exchange and improving the merging heuristics, we increase the performance of the single network, and achieve a score of 23.9 on the Panoptic Quality (PQ) metric on Mapillary Vistas validation, with an input resolution of 640 x 900 pixels. On Cityscapes validation, our method achieves a PQ score of 45.9 with an input resolution of 512 x 1024 pixels. Moreover, our method decreases the prediction time by a factor of 2 with respect to separate networks.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.