We present a method for reducing the treewidth of a graph while preserving all of its minimal s − t separators up to a certain fixed size k. This technique allows us to solve s − t Cut and Multicut problems with various additional restrictions (e.g., the vertices being removed from the graph form an independent set or induce a connected graph) in linear time for every fixed number k of removed vertices.Our results have applications for problems that are not directly defined by separators, but the known solution methods depend on some variant of separation. For example, we can solve similarly restricted generalizations of Bipartization (delete at most k vertices from G to make it bipartite) in almost linear time for every fixed number k of removed vertices. These results answer a number of open questions in the area of parameterized complexity. Furthermore, our technique turns out to be relevant for (H,C, K)and (H,C, ≤K)-coloring problems as well, which are cardinality constrained variants of the classical H-coloring problem. We make progress in the classification of the parameterized complexity of these problems by identifying new cases that can be solved in almost linear time for every fixed cardinality bound. * A subset of the results was presented at STACS 2010 [52].
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.