The coronavirus diseases 2019 (COVID-19) outbreak continues to spread rapidly across the world and has been declared as pandemic by World Health Organization (WHO). Saudi Arabia was among the countries that was affected by the deadly and contagious virus. Using a real-time data from 2 March 2020 to 15 May 2020 collected from Saudi Ministry of Health, we aimed to give a local prediction of the epidemic in Saudi Arabia. We used two models: the Logistic Growth and the Susceptible-Infected-Recovered for real-time forecasting the confirmed cases of COVID-19 across Saudi Arabia. Our models predicted that the epidemics of COVID-19 will have total cases of 69,000 to 79,000 cases. The simulations also predicted that the outbreak will entering the final-phase by end of June 2020.
The suspected cases of COVID-19 must be detected quickly and accurately to avoid the transmission of COVID-19 on a large scale. Existing COVID-19 diagnostic tests are slow and take several hours to generate the required results. However, on the other hand, most X-rays or chest radiographs only take less than 15 min to complete. Therefore, we can utilize chest radiographs to create a solution for early and accurate COVID-19 detection and diagnosis to reduce COVID-19 patient treatment problems and save time. For this purpose, CovidDetNet is proposed, which comprises ten learnable layers that are nine convolutional layers and one fully-connected layer. The architecture uses two activation functions: the ReLu activation function and the Leaky Relu activation function and two normalization operations that are batch normalization and cross channel normalization, making it a novel COVID-19 detection model. It is a novel deep learning-based approach that automatically and reliably detects COVID-19 using chest radiograph images. Towards this, a fine-grained COVID-19 classification experiment is conducted to identify and classify chest radiograph images into normal, COVID-19 positive, and pneumonia. In addition, the performance of the proposed novel CovidDetNet deep learning model is evaluated on a standard COVID-19 Radiography Database. Moreover, we compared the performance of our approach with hybrid approaches in which we used deep learning models as feature extractors and support vector machines (SVM) as a classifier. Experimental results on the dataset showed the superiority of the proposed CovidDetNet model over the existing methods. The proposed CovidDetNet outperformed the baseline hybrid deep learning-based models by achieving a high accuracy of 98.40%.
In this paper, a new tweet analysing approach is proposed, which is composed of two main phases; feature selection and tweets classification. In the first phase, mutual information (MI) is used to select the best set of features to reduce the feature dimensions. In the second phase, a metaheuristic algorithm is used to optimise weights and biases of multi-layer perceptrons (MLPs) network and then implemented to classify twitter sentiments. Experimental results on existing twitter dataset show better performance of the glowworm swarm optimisation (GSO) based MLP over genetic algorithm (GA )and biogeography-based optimisation (BBO) algorithms.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.