A generalized method was developed to estimate the liquid density of vegetable oils and fatty acids. The correlation for vegetable oils was based on fatty acid critical properties and composition of the oil. The correlations predicted the density of vegetable oils and fatty acids with an average absolute deviation of 0.21 and 0.77%, respectively. The present method is slightly more accurate in predicting vegetable oil density and simpler than the method of Halvorsen et al. Also, a method is introduced that predicts viscosity from density data, thus relating two key properties of vegetable oils.
Chitosan-coated perlite beads were prepared in the laboratory via the phase inversion of a liquid slurry of chitosan dissolved in oxalic acid and perlite to an alkaline bath for better exposure of amine groups (NH 2 ). The NH 2 groups in chitosan are considered active sites for the adsorption of heavy metals. The beads were characterized by scanning electron microscopy (SEM) and energy-dispersive X-ray spectroscopy (EDS) microanalysis, which revealed their porous nature. The chitosan content of the beads was 32%, as determined using a thermogravimetric method. The adsorption of Cd 2+ from an aqueous solutions on chitosan-coated perlite beads was studied under both equilibrium and dynamic conditions in the concentration range of 100-5000 ppm. The pH of the solution was varied over a range of 2-8. The adsorption of Cd 2+ on chitosan was determined to be pH-dependent, and the maximum adsorption capacity of chitosan-coated perlite beads was determined to be 178.6 mg/g of bead at 298 K when the Cd(II) concentration was 5000 mg/L and the pH of the solution was 6.0. On a chitosan basis, the capacity was 558 mg/g of chitosan. The XPS data suggests that cadmium was mainly adsorbed as Cd 2+ and was attached to the NH 2 group. The adsorption data could be fitted to a two-site Langmuir adsorption isotherm. The data obtained at various temperatures provided a single characteristic curve when correlated according to a modified Polanyi's potential theory. The heat of adsorption data calculated at various loadings suggests that the adsorption was exothermic in nature. It was noted that a 0.1 N solution of HCl could remove the adsorbed cadmium from the beads, but a bed volume of approximately three times the bed volume of treated solution was required to completely remove Cd(II) from the beads. However, one bed volume of 0.5 M ethylenediamine tetra acetate (EDTA) solution can remove all of the adsorbed cadmium after the bed became saturated with Cd(II) during dynamic study with a solution containing 100 mg/L of cadmium. The diffusion coefficient of Cd(II) onto chitosan-coated beads was calculated from the breakthrough curve, using Rosen's model, and was determined to be 8.0 × 10 -13 m 2 /s.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.