Highly prevalent conditions with multiple and complex underlying etiologies are a challenge to public health. Undernutrition, for example, affects 20% of children in the developing world. The cause and consequence of poor nutrition are multifaceted. Undernutrition has been associated with half of all deaths worldwide in children aged <5 years; in addition, its pernicious long-term effects in early childhood have been associated with cognitive and physical growth deficits across multiple generations and have been thought to suppress immunity to further infections and to reduce the efficacy of childhood vaccines. The Etiology, Risk Factors, and Interactions of Enteric Infections and Malnutrition and the Consequences for Child Health (MAL-ED) Study, led by the Fogarty International Center of the National Institutes of Health and the Foundation for the National Institutes of Health, has been established at sites in 8 countries with historically high incidence of diarrheal disease and undernutrition. Central to the study is the hypothesis that enteropathogen infection contributes to undernutrition by causing intestinal inflammation and/or by altering intestinal barrier and absorptive function. It is further postulated that this leads to growth faltering and deficits in cognitive development. The effects of repeated enteric infection and undernutrition on the immune response to childhood vaccines is also being examined in the study. MAL-ED uses a prospective longitudinal design that offers a unique opportunity to directly address a complex system of exposures and health outcomes in the community-rather than the relatively rarer circumstances that lead to hospitalization-during the critical period of development of the first 2 years of life. Among the factors being evaluated are enteric infections (with or without diarrhea) and other illness indicators, micronutrient levels, diet, socioeconomic status, gut function, and the environment. MAL-ED aims to describe these factors, their interrelationships, and their overall impact on health outcomes in unprecedented detail, and to make individual, site-specific, and generalized recommendations regarding the nature and timing of possible interventions aimed at improving child health and development in these resource-poor settings.
The layered oxyselenide BiCuSeO system is known as one of the high‐performance thermoelectric materials with intrinsically low thermal conductivity. By employing atomic, nano‐ to mesoscale structural optimizations, low thermal conductivity coupled with enhanced electrical transport properties can be readily achieved. Upon partial substitution of Bi3+ by Ca2+ and Pb2+, the thermal conductivity can be reduced to as low as 0.5 W m−1 K−1 at 873 K through dual‐atomic point‐defect scattering, while a high power factor of ≈1 × 10−3 W cm−1 K−2 is realized over a broad temperature range from 300 to 873 K. The synergistically optimized power factor and intrinsically low thermal conductivity result in a high ZT value of ≈1.5 at 873 K for Bi0.88Ca0.06Pb0.06CuSeO, a promising candidate for high‐temperature thermoelectric applications. It is envisioned that the all‐scale structural optimization is critical for optimizing the thermoelectricity of quaternary compounds.
Upon 20% Te substitution, the band gap decreases from 0.8 eV to 0.65 eV. Rising temperature promotes minority carrier jumps across the band gap, thereby improving electrical conductivity. With low thermal conductivity and large Seebeck coefficients, a remarkable ZT of 0.71 at 873 K is achieved for BiCuSe0.94Te0.06O.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.