Wild elephants represent the biggest human–wildlife conflict issue in Livingstone, Zambia. However, little is known about their movements. This survey investigated elephants’ habitat use outside a core protected and fenced zone that forms part of Mosi-oa-Tunya National Park, Zambia. Using ‘patch-occupancy’ methodology, indications of elephant presence (feeding behaviour, dung and tracks) were surveyed. The survey aimed to assist proposed future monitoring exercises by defining the geographical extent that should be considered to improve accuracy in species abundance estimates. Results were supplemented using collected indications of elephant presence from prior monitoring exercises, and during this survey. Elephant presence was confirmed up to 8 km from the boundary of the protected core habitat, focussed in: (1) an unfenced zone of the national park, (2) along a road leading from the national park to the Dambwa Forest to the north and (3) along two rivers located to the west (Sinde River) and east (Maramba River) of the core area. Detection probability of elephant presence was high using these methods, and we recommend regular sampling to determine changes in habitat use by elephants, as humans continue to modify land-use patterns.Conservation implications: Identification of elephant ranging behaviour up to 8 km outside of the Mosi-oa-Tunya National Park in southern Zambia will assist in managing human– elephant conflict in the area, as well as in assessing this seasonal population’s abundance.
Using biomass for charcoal production in sub‐Saharan Africa (SSA) may change carbon stock dynamics and lead to irreversible changes in the carbon balance, yet we have little understanding of whether these dynamics vary by biome in this region. Currently, charcoal production contributes up to 7% of yearly deforestation in tropical regions, with carbon emissions corresponding to 71.2 million tonnes of CO2 and 1.3 million tonnes of CH4. With a projected increased demand for charcoal in the coming decades, even low harvest rates may throw the carbon budget off‐balance due to legacy effects. Here, we parameterized the dynamic global vegetation model LPJ‐GUESS for six SSA biomes and examined the effect of charcoal production on net ecosystem exchange (NEE), carbon stock sizes and recovery time for tropical rain forest, montane forest, moist savanna, dry savanna, temperate grassland and semi‐desert. Under historical charcoal regimes, tropical rain forests and montane forests transitioned from net carbon sinks to net sources, that is, mean cumulative NEE from −3.56 ± 2.59 kg C/m2 to 2.46 ± 3.43 kg C/m2 and −2.73 ± 2.80 kg C/m2 to 1.87 ± 4.94 kg C/m2 respectively. Varying charcoal production intensities resulted in tropical rain forests showing at least two times higher carbon losses than the other biomes. Biome recovery time varied by carbon stock, with tropical and montane forests taking about 10 times longer than the fast recovery observed for semi‐desert and temperate grasslands. Our findings show that high biomass biomes are disproportionately affected by biomass harvesting for charcoal, and even low harvesting rates strongly affect vegetation and litter carbon and their contribution to the carbon budget. Therefore, the prolonged biome recoveries imply that current charcoal production practices in SSA are not sustainable, especially in tropical rain forests and montane forests, where we observe longer recovery for vegetation and litter carbon stocks.
<p>The increasing demand for charcoal in Sub-Saharan Africa (SSA) is a growing threat to tropical ecosystems as more forest areas get cleared to meet the high energy needs. While the region&#8217;s current socio-economic trends, such as increasing population, urbanisation and high poverty levels, will likely drive high charcoal demands into the future, current estimates indicate that charcoal production contributes up to 7% of total deforestation in tropical ecosystems every year, with carbon emissions corresponding to 71.2 million tonnes of CO<sub>2</sub> and 1.3 million tonnes of CH<sub>4</sub>. Although forest management practices could enable sustainable production by using harvest cycles to allow forest regeneration, emissions from charcoal production may contribute to exacerbate global warming. A transition for other energy carriers in SSA has been called for, which may be a slow process as it depends on investments and cultural changes, thus projected demands for charcoal could severely impact the balance and timing of carbon fluxes and the overall carbon budget of tropical ecosystems. To better understand how charcoal production affects tropical ecosystems carbon dynamics, we parameterised a dynamic global vegetation model, LPJ-GUESS, to determine the magnitude and direction of carbon fluxes following charcoal production. We simulated 300 model years for two forest governance regimes, natural and managed forest, on 782 gridcells at 0.5&#176; x 0.5&#176; resolution covering the tropical rain forest of Africa. We allowed for tree harvesting for charcoal only in managed forests, where we vary the fraction of trees cut (10%, 20%, and 30%) and harvest rotation cycles (10, 20, and 30 years). We find that Net Ecosystem Exchange (NEE) under all charcoal production regimes cause tropical forests to transition from a net carbon sink (NEE natural = -0.024 &#177; 0.047 kg C/m<sup>2</sup> yr-1) to a net carbon source. We estimate NEE = 0.005 &#177; 0.432 kg C/m<sup>2</sup> yr-1 under the least intense management regime (10% forest cut every 30 years) and a mean NEE of 0.027 &#177; 0.630 kg C/m<sup>2</sup> yr-1 for the most intense regime (30% forest cut every 10 years). We further observe an initial and steep drop in vegetation carbon following the start of charcoal production for all management regimes, and this change quickly stabilises as tree harvest keeps vegetation under a new stable state that is lower than that of natural forests. Compared to our modelled natural forest, we find that all charcoal regimes lead to more than a 25% decline in vegetation carbon over time. We further examined carbon partitioning into pools of litter and soil and find consistent patterns of transition from sink to source. These findings suggest that while carbon dynamics vary in tropical systems depending on the intensity and frequency of charcoal production, even a management regime of 10% charcoal production every 30 years can result in forest carbon loss with amplified vegetation carbon losses in the order of 25%.&#160;</p>
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.