Increased plasma concentration of trimethylamine N-oxide (TMAO), a proatherogenic metabolite, has been linked to adverse cardiovascular outcomes; however, it remains unclear whether TMAO is a biomarker or whether it induces direct detrimental cardiovascular effects. Because altered cardiac energy metabolism and mitochondrial dysfunction play crucial roles in the development of cardiovascular diseases, we hypothesized that increased TMAO concentration may alter mitochondrial energy metabolism. The aim of the present study was to determine the effects of TMAO on cardiac mitochondrial energy metabolism. Acute exposure of cardiac fibers to TMAO decreased LEAK (substrate-dependent) and OXPHOS (oxidative phosphorylation-dependent) mitochondrial respiration with pyruvate and impaired substrate flux via pyruvate dehydrogenase. The administration of TMAO at a dose of 120mg/kg for 8 weeks increased TMAO concentration in plasma and cardiac tissues 22-23 times to about 15μM and 11nmol/g, respectively. Long-term TMAO administration decreased mitochondrial LEAK state respiration with pyruvate by 30% without affecting OXPHOS state respiration. However, no significant changes in mitochondrial reactive oxygen species production were observed after acute exposure of cardiac fibers to TMAO under physiological conditions. In addition, both long-term TMAO administration and acute exposure to TMAO decreased respiration with palmitoyl-CoA indicating impaired β-oxidation. Taken together, our results demonstrate that increased TMAO concentration impairs pyruvate and fatty acid oxidation in cardiac mitochondria. Thus, the accumulation of TMAO in cardiac tissues leads to disturbances in energy metabolism that can increase the severity of cardiovascular events.
This study showed a substantial increase in IOP after ketamine injection and a less substantial, but still significant increase after diazepam injection. These findings should be taken into consideration when using these drugs in dogs with fragile corneas, or in dogs predisposed or affected by glaucoma.
Background and Objectives: A particular problem in cardiology is poor adherence to pharmacological treatment among patients with hypertension. It is known that approximately half of these patients do not use their medications as prescribed by their doctor. Patients may choose not to follow the doctor’s recommendations and regularly do not control their blood pressure, owing to many factors. A convenient method for measuring the level of adherence is the Morisky Medication Adherence Scale, which also provides insight into possible remedies for low adherence. We investigated their therapy, knowledge about the disease and its control, and demographic differences to assess the adherence of patients with hypertension. Materials and Methods: This was a cross-sectional observational study. Data were collected through a survey of 12 pharmacies in Latvia. The study involved 187 participants with hypertension. Results: The prevalence of non-adherence was 46.20% in Latvia. The oldest patients were the most adherent (p = 0.001, β = 0.27). The higher the self-rated extent from 0 to 10, to which the patient takes their antihypertensives exactly as instructed by their physician, the higher the level of adherence (p < 0.0001, β = 0.38), where at “0”, the patient does not follow physician instructions at all, and at “10”, the patient completely follows the physician’s instructions. Non-adherent patients tend to assess their medication-taking behavior more critically than adherent patients. The longer the patient is known to suffer from hypertension, the more adherent he or she is (p = 0.014, β = 0.19). Conclusions: Medication non-adherence among patients with hypertension is high in Latvia. Further investigations are needed to better understand the reasons for this and to establish interventions for improving patient outcomes.
Levofloxacin pharmacokinetic profiles were evaluated in 6 healthy female rabbits after intravenous (I/V), intramuscular (I/M), or subcutaneous (S/C) administration routes at a single dose of 5 mg/kg in a 3 × 3 cross-over study. Plasma levofloxacin concentrations were detected using a validated Ultra Performance Liquid Chromatography method with a fluorescence detector. Levofloxacin was quantifiable up to 10 h post-drug administration. Mean AUC 0-last values of 9.03 ± 2.66, 9.07 ± 1.80, and 9.28 ± 1.56 mg/h*L were obtained via I/V, I/M, and S/C, respectively. Plasma clearance was 0.6 mL/g*h after I/V administration. Peak plasma concentrations using the I/M and S/C routes were 3.33 ± 0.39 and 2.91 ± 0.56 µg/mL. Bioavailability values, after extravascular administration were complete, -105% ± 27% (I/M) and 118% ± 40% (S/C). Average extraction ratio of levofloxacin after I/V administration was 7%. Additionally, levofloxacin administration effects on tear production and osmolarity were evaluated. Tear osmolarity decreased within 48 h post-drug administration. All 3 levofloxacin administration routes produced similar pharmacokinetic profiles. The studied dose is unlikely to be effective in rabbits; however, it was calculated that a daily dose of 29 mg/kg appears effective for I/V administration for pathogens with MIC < 0.5 µg/mL.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.