The acoustic black hole (ABH) can be utilized to achieve aggregation of flexural wave in structures with the feature that the thickness gradually reduced to zero with a power exponent no less than 2. The above characteristics could be applied in vibration reduction, noise attenuation or improving sound insulation. Previous literatures on vibration and acoustic characteristics of ABH structures mainly focus on the structural response under mechanical force excitation, while the transmission loss (TL) of circular plates embedded with two-dimensional ABHs investigated in this paper is a vibro-acoustic coupling procedure under excitation of diffuse sound field. Series of vibro-acoustic coupling finite element models (FEM) for TL analysis of ABH circular plates were established by automatic matched layer (AML) method in this paper and an experimental platform for measuring TLs of ABH circular plates and uniform plates was constructed. The accuracy of the FEM analysis was verified by experimental measurements. To systematically analyze the influence mechanism of parameters of the ABH on TLs of ABH circular plates, the effects of diameter, orientation, number, and truncation thickness of ABHs on TLs of ABH circular plates were further studied. The effect of the damping layer on TLs of circular plates embedded with 1 and 19 ABHs was also analyzed and it reveals that the influence of damping layer mainly concentrates on the first-order resonance frequency and damping-controlled region of the plate, and at some frequencies, the greater the damping layer thickness, the worse the sound insulation performance, despite that the modal damping loss factor has been increased in the whole frequency domain.
Exposure to PM is associated with an increased risk of lung diseases, and oxidative damage is the main reason for PM-mediated lung injuries. However, little is known about the early molecular events in PM-induced lung toxicity. In the present study, the metabolites in PM-treated A549 cells were examined via a robust and nondestructive nuclear magnetic resonance (NMR)-based metabolic approach to clarify the molecular mechanism of PM-induced toxicity. NMR analysis revealed that 12 metabolites were significantly altered in PM-treated A549 cells, including up-regulation of alanine, valine, lactate, ω-6 fatty acids, and citrate and decreased levels of gamma-aminobutyric acid, acetate, leucine, isoleucine, D-glucose, lysine, and dimethylglycine. Pathway analysis demonstrated that seven metabolic pathways which included alanine, aspartate and glutamate metabolism, aminoacyl-tRNA biosynthesis, taurine and hypotaurine metabolism, arginine and proline metabolism, starch and sucrose metabolism, valine, leucine and isoleucine biosynthesis, and tricarboxylic acid cycle were mostly influenced. Our results indicate that NMR technique turns out to be a simple and reliable method for exploring the toxicity mechanism of air pollutant.
Braided corrugated hoses are widely used in displacement compensation and vibration absorption environments due to their excellent flexibility and energy dissipation properties; however, the axial stiffness has rarely been discussed before as an important physical property of braided corrugated hoses. In this paper, the theoretical axial stiffness model for braided corrugated hoses is established based on the energy method and the theory of the curved beam. The influences of the braiding parameters of the metallic braided tube and the structural parameters of the bellows on the axial stiffness are also discussed. Through finite element tensile testing, the axial stiffness curves of the braided corrugated hose under different braiding angles and different wire diameters are obtained. The theoretical axial stiffness model is in good agreement with the simulation experiment, which reflects the nonlinear effects of the braiding angle and wire diameter on the braided corrugated hose. This paper provides an accurate method and basis for the design of braided corrugated hoses in the future.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.