TSdb ( http://tsdb.cbi.pku.edu.cn ) is the first manually curated central repository that stores formatted information on the substrates of transporters. In total, 37608 transporters with 15075 substrates from 884 organisms were curated from UniProt functional annotation. A unique feature of TSdb is that all the substrates are mapped to identifiers from the KEGG Ligand compound database. Thus, TSdb links current metabolic pathway schema with compound transporter systems via the shared compounds in the pathways. Furthermore, all the transporter substrates in TSdb are classified according to their biochemical properties, biological roles and subcellular localizations. In addition to the functional annotation of transporters, extensive compound annotation that includes inhibitor information from the KEGG Ligand and BRENDA databases has been integrated, making TSdb a useful source for the discovery of potential inhibitory mechanisms linking transporter substrates and metabolic enzymes. User-friendly web interfaces are designed for easy access, query and download of the data. Text and BLAST searches against all transporters in the database are provided. We will regularly update the substrate data with evidence from new publications.
Background
Brain cancer is one of the eight most common cancers occurring in people aged 40+ and is the fifth-leading cause of cancer-related deaths for males aged 40–59. Accurate subtype identification is crucial for precise therapeutic treatment, which largely depends on understanding the biological pathways and regulatory mechanisms associated with different brain cancer subtypes. Unfortunately, the subtype-implicated genes that have been identified are scattered in thousands of published studies. So, systematic literature curation and cross-validation could provide a solid base for comparative genetic studies about major subtypes.
Results
Here, we constructed a literature-based brain cancer gene database (BCGene). In the current release, we have a collection of 1421 unique human genes gathered through an extensive manual examination of over 6000 PubMed abstracts. We comprehensively annotated those curated genes to facilitate biological pathway identification, cancer genomic comparison, and differential expression analysis in various anatomical brain regions. By curating cancer subtypes from the literature, our database provides a basis for exploring the common and unique genetic mechanisms among 40 brain cancer subtypes. By further prioritizing the relative importance of those curated genes in the development of brain cancer, we identified 33 top-ranked genes with evidence mentioned only once in the literature, which were significantly associated with survival rates in a combined dataset of 2997 brain cancer cases.
Conclusion
BCGene provides a useful tool for exploring the genetic mechanisms of and gene priorities in brain cancer. BCGene is freely available to academic users at http://soft.bioinfo-minzhao.org/bcgene/.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.