This paper reports on the result of a research into the utilisation of a smartphone for the study of magnetostatics on the basis of experiments. The use of such a device gives great measurement result and thus it can replace magnetic sensor tools that are relatively expensive. For the best experimental result, firstly the position of the magnetic sensor in the smartphone has to be considered by way of value mapping of a magnetic field due to permanent magnet. The magnetostatics experiment investigated in this research was the measurement of magnetic field due to electrical currents in two shapes of wire, straight and looped. The current flow, the distance between the observation point and the wire, and the diameter of the loop were the variable parameters investigated to test the smartphone's capabilities as a measurement tool. To evaluate the experimental results, the measured data were compared with theoretical values that were calculated by using both an analytical and a numerical approach. According to the experiment results, the measured data had good agreement with the results from the analytical and the numerical approach. This means that the use of the magnetic sensor in a smartphone in physics experiments is viable, especially for magnetic field measurement.
This paper describes the use of an inexpensive smartphone's magnetic sensor to measure magnetic field components (B x , B y and B z ) induced by current wires in magnetostatic experiments. The variable parameters used to measure the magnetic sensor's capabilities were: the geometrical shapes of the wire, current flow, and the distance between wire and observation point. The experimental results are in good agreement with the results obtained from calculations using an analytical and numerical approach. In addition, the 2D vectors and magnitude of the magnetic field have been successfully illustrated. This study confirmed that the inexpensive smartphone's magnetic sensor had a good ability to accurately measure the components of a magnetic field in a magnetostatic experiment, which is especially suitable for undergraduate students.
This paper reports on the measurement of a magnetic field due to the coil carrying current by using the magnetic sensor in a smartphone as an alternate to the relatively expensive magnetic sensor probe. The location of the magnetic sensor in the smartphone was known by mapping the value of the magnetic field due to the permanent magnetic bar so that we could obtain an accurate measurement. The variable parameter examined in this magnetostatics experiment was the distance of coils to the magnetic sensor in a smartphone and the magnitude of the current in the coils. The coils used in this research have 8 cm radii and 30 turns of wire, with a 0.3 A current flowing, and the coils were arranged to make a Helmholtz and anti-Helmholtz configuration. The resulting magnetic fields by a coil, Helmholtz coil and anti-Helmholtz coil were measured and compared with the value from calculations using an analytical and numerical approach. According to these results, it can be confirmed that the magnetic field due to a Helmholtz and anti-Helmholtz coil can be measured accurately using the smartphone's magnetic sensor in a physics experiment.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.