An explosive growth in vehicular wireless applications gives rise to spectrum resource starvation. Cognitive radio has been used in vehicular networks to mitigate the impending spectrum starvation problem by allowing vehicles to fully exploit spectrum opportunities unoccupied by licensed users. Efficient and effective detection of licensed user is a critical issue to realize cognitive radio applications. However, spectrum sensing in vehicular environments is a very challenging task due to vehicle mobility. For instance, vehicle mobility has a large effect on the wireless channel, thereby impacting the detection performance of spectrum sensing. Thus, gargantuan efforts have been made in order to analyze the fading properties of mobile radio channel in vehicular environments. Indeed, numerous studies have demonstrated that the wireless channel in vehicular environments can be characterized by a temporally correlated Rayleigh fading. In this paper, we focus on energy detection for spectrum sensing and a counting rule for cooperative sensing based on Neyman-Pearson criteria. Further, we go into the effect of the sensing and reporting channel conditions on the sensing performance under the temporally correlated Rayleigh channel. For local and cooperative sensing, we derive some alternative expressions for the average probability of misdetection. The pertinent numerical and simulating results are provided to further validate our theoretical analyses under a variety of scenarios.
It has been widely acknowledged that network slicing is a key architectural technology to accommodate diversified services for the next generation network (5G). By partitioning the underlying network into multiple dedicated logical networks, 5G can support a variety of extreme business service needs. As network slicing is implemented in radio access networks (RAN), user handoff becomes much more complicated than that in traditional mobile networks. As both physical resource constraints of base stations and logical connection constraints of network slices should be considered in handoff decision, an intelligent handoff policy becomes imperative. In this paper, we model the handoff in RAN slicing as a Markov decision process and resort to deep reinforcement learning to pursue long-term performance improvement in terms of user quality of service and network throughput. The effectiveness of our proposed handoff policy is validated via simulation experiments.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.