We previously developed a biobetter version of rhIFN-β (R27T) that possesses an additional glycosylation site compared with rhIFN-β 1a. Herein, we characterized N-glycosylation heterogeneity of R27T, which includes both N-glycan site occupancy heterogeneity (macro-heterogeneity) and complexity of carbohydrate moieties (micro-heterogeneity). N-glycan site occupancy manifested as distinct differences in size and isoelectric point. The analysis of complex carbohydrate moieties of R27T involved the common biopharmaceutical glycosylation critical quality attributes such as core fucosylation, antennary composition, sialylation, N-acetyllactosamine extensions, linkages, and overall glycan profiles using weak anion-exchange and hydrophilic interaction high-performance liquid chromatography with 2-aminobenzoic acid-labeled N-glycans. The double-glycosylated form accounted for approx. 94% R27T, while the single-glycosylated form accounted for 6% R27T. N-glycans consisted of a mixture of bi-, tri-, and tetra-antennary glycans, some with N-acetyllactosamine extensions, but neither outer arm fucose nor α-galactose was detected. Sialic acid major variants, N-acetyl- and N-glycolyl-neuraminic acid, were more abundant in R27T than in Rebif. The major N-glycan, accounting for ∼42% of total N-glycans, had a di-sialylated, core-fucosylated bi-antennary structure.
A hyperglycosylated recombinant human interferon-β (rhIFN-β) R27T mutant was established to improve relapsing-remitting multiple sclerosis (RRMS) in our previous study. We focused on the stability of the R27T mutant throughout its production lifetime, including culture, purification, and storage before formulation prior to clinical use. Herein, we address the stability of this protein during optimized culture and purification processes. Additionally, we employed artificial stress conditions during culture and purification to characterize R27T instability. Although, among total R27T, relative native R27T ratio displayed transiently low even under optimized production process, the ratio was recovered by the end of the overall production process, suggesting that culture and purification processes are optimized. Artificial stress during culture and purification processes resulted in degradation of R27T acidic and basic variants, and mismatched disulfide bonds in no-aggregated forms as well as in the aggregated form. The presence of disulfide bond exchange without aggregation in the unfolded/misfolded state could be a novel finding for rhIFN-β products. The results provide meaningful information for the comprehensive evaluation of the stability of the R27T variant.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.