We consider the preventive maintenance of a production system that is deteriorated by random shocks and the production process itself. The degree of deterioration is modeled by discrete and finite states. Shocks arrive according to a Poisson process and deteriorate the system by random amounts. The system may deteriorate whenever it produces an item. The system is continuously monitored and repaired if the system state is at or above a predetermined level for maintenance. We analyze the lifetime, product quantity, average cost, and average profit considering revenue from the product and cost due to setup, operation, and repair. Assuming a structure of system parameters and costs, using numerical examples, we investigate the impact of production and shock arrivals on the average profit and the optimal maintenance level that maximizes the average profit. The proposed model is applicable to manufacturing tasks in which machines wear due to production, for example, press processes, milling, turning, punching, and drilling.
Unmanned aerial vehicles (UAVs) are expected to make groundbreaking changes in the logistics industry. Leading logistics companies have been developing and testing their usage of UAVs recently as an environmentally friendly and cost-effective option. In this paper, we investigate how much the UAV delivery service is environmentally friendly compared to the traditional ground vehicle (GV) delivery service. Since there are fuel (battery) and loadable weight restrictions in the UAV delivery, multi-hopping of UAV is necessary, which may cause a large consumption of electrical energy. We present a two-phase approach. In Phase I, a new vehicle routing model to obtain optimal delivery schedules for both UAV-alone and GV-alone delivery systems is proposed, which considers each system's restrictions, such as the max loadable weight and fuel replenishment. In Phase II, CO 2 emissions are computed as a sustainability measure based on the travelling distance of the optimal route obtained from Phase I, along with various GV travel-speeds. A case study finds that the UAV-alone delivery system is much more CO 2 efficient in all ranges of the GV speeds investigated.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.