Phosphatidylinositol 3-kinase (PI3K) is essential for both G protein-coupled receptor (GPCR)- and receptor tyrosine kinase (RTK)-mediated cancer cell migration. Here, we have shown that maximum migration is achieved by full activation of phosphatidylinositol 3,4,5-trisphosphate-dependent Rac exchanger 1 (P-Rex1) in the presence of Gβγ and PI3K signaling pathways. Lysophosphatidic acid (LPA)-induced migration was higher than that of epidermal growth factor (EGF)-induced migration; however, LPA-induced activation of Akt was lower than that stimulated by EGF. LPA-induced migration was partially blocked by either Gβγ or RTK inhibitor and completely blocked by both inhibitors. LPA-induced migration was synergistically increased in the presence of EGF and vice versa. In correlation with these results, sphingosine-1-phosphate (S1P)-induced migration was also synergistically induced in the presence of insulin-like growth factor-1 (IGF-1). Finally, silencing of P-Rex1 abolished the synergism in migration as well as in Rac activation. Moreover, synergistic activation of MMP-2 and cancer cell invasion was attenuated by silencing of P-Rex1. Given these results, we suggest that P-Rex1 requires both Gβγ and PI3K signaling pathways for synergistic activation of Rac, thereby inducing maximum cancer cell migration and invasion.
Akt plays an important role in a variety of cellular physiologies such as growth, proliferation, and differentiation. In skeletal muscle, Akt has been implicated in regulating regeneration, hypertrophy, and atrophy. In this study, the role of Akt has been examined during skeletal muscle differentiation. Culturing C2C12 myoblasts under low serum (1% horse serum) and high density converted cell morphology from a round shape to an elongated and multi-nucleated shape. Morphological changes were initiated from day 2 of differentiation. In addition, the expression of both myogenin G and myogenin D was elevated from day 2 of differentiation. Skeletal muscle differentiation was abolished by silencing Akt1 or Akt2, but was significantly enhanced by the over-expression of either Akt1 or Akt2. The activation of Akt was observed from day 2 of differentiation and disappeared after day 7. The expression of krüppel-like factor 4 was observed from day 6 of differentiation. Moreover, this expression was blocked in cells silencing either Akt1 or Akt2. In addition, the promoter activity of krüppel-like factor 4 was significantly reduced in cells silencing Akt1 or Akt2. These results suggest that Akt regulates skeletal muscle differentiation through the regulation of krüppel-like factor 4 expression.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.