High-performance thin-film LiCoO2 cathodes were successfully fabricated by aluminum-oxide coating. Both the galvanostatic charge−discharge experiments and the cyclic voltammograms (CVs) showed enhanced electrochemical properties in the Al2O3-coated LiCoO2
films compared to those in the uncoated ones. The improved cycling behaviors in the coated
samples are caused by the suppression of cobalt dissolution from the LiCoO2 thin films,
with the formation of an aluminum-oxide solid electrolyte residing between the LiCoO2
cathode and liquid electrolyte. Galvanostatic intermittent titration technique (GITT) results
clearly showed that the Al2O3-coated samples had higher Li diffusivities than the uncoated
ones after 80 cycles. The effect of Al2O3 thickness on the electrochemical properties up to
300 nm was also studied.
Two-dimensional (2D) van der Waals (vdW) heterostructures herald new opportunities for conducting fundamental studies of new physical/chemical phenomena and developing diverse nanodevice applications. In particular, vdW heterojunction p−n diodes exhibit great potential as highperformance photodetectors, which play a key role in many optoelectronic applications. Here, we report on 2D MoTe 2 /MoS 2 multilayer semivertical vdW heterojunction p−n diodes and their optoelectronic application in self-powered visible−invisible multiband detection and imaging. Our MoTe 2 /MoS 2 p−n diode exhibits an excellent electrical performance with an ideality factor of less than 1.5 and a high rectification (ON/OFF) ratio of more than 10 4 . In addition, the photodiode exhibits broad spectral photodetection capability over the range from violet (405 nm) to near-infrared (1310 nm) wavelengths and a remarkable linear dynamic range of 130 dB within an optical power density range of 10 −5 to 1 W/cm 2 in the photovoltaic mode. Together with these favorable static photoresponses and electrical behaviors, very fast photo-and electrical switching behaviors are clearly observed with negligible changes at modulation frequencies greater than 100 kHz. In particular, inspired by the photoswitching results for periodic red (638 nm) and near-infrared (1310 nm) illumination at 100 kHz, we successfully demonstrate a prototype self-powered visible− invisible multiband image sensor based on the MoTe 2 /MoS 2 p−n photodiode as a pixel. Our findings can pave the way for more advanced developments in optoelectronic systems based on 2D vdW heterostructures.
Simultaneous organics removal and bio-electrochemical denitrification using a microbial fuel cell (MFC) reactor were investigated in this study. The electrons produced as a result of the microbial oxidation of glucose in the anodic chamber were transferred to the anode, which then flowed to the cathode in the cathodic chamber through a wire, where microorganisms used the transferred electrons to reduce the nitrate. The highest power output obtained on the MFCs was 1.7 mW/m(2) at a current density of 15 mA/m(2). The maximum volumetric nitrate removal rate was 0.084 mg NO(3)(-)-N cm(-2) (electrode surface area) day(-1). The coulombic efficiency was about 7%, which demonstrated that a substantial fraction of substrate was lost without current generation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.