Aimed at reducing deficiencies in representing the Madden-Julian oscillation (MJO) in general circulation models (GCMs), a global model evaluation project on vertical structure and physical processes of the MJO was coordinated. In this paper, results from the climate simulation component of this project are reported. It is shown that the MJO remains a great challenge in these latest generation GCMs. The systematic eastward propagation of the MJO is only well simulated in about one fourth of the total participating models. The observed vertical westward tilt with altitude of the MJO is well simulated in good MJO models but not in the poor ones. Damped Kelvin wave responses to the east of convection in the lower troposphere could be responsible for the missing MJO preconditioning process in these poor MJO models. Several process-oriented diagnostics were conducted to discriminate key processes for realistic MJO simulations. While large-scale rainfall partition and low-level mean zonal winds over the Indo-Pacific in a model are not found to be closely associated with its MJO skill, two metrics, including the low-level relative humidity difference between high-and low-rain events and seasonal mean gross moist stability, exhibit statistically significant correlations with the MJO performance. It is further indicated that increased cloud-radiative feedback tends to be associated with reduced amplitude of intraseasonal variability, which is incompatible with the radiative instability theory previously proposed for the MJO. Results in this study confirm that inclusion of air-sea interaction can lead to significant improvement in simulating the MJO.
A linear wave theory for the Madden–Julian oscillation (MJO), previously developed by Sobel and Maloney, is extended upon in this study. In this treatment, column moisture is the only prognostic variable and the horizontal wind is diagnosed as the forced Kelvin and Rossby wave responses to an equatorial heat source/sink. Unlike the original framework, the meridional and vertical structure of the basic equations is treated explicitly, and values of several key model parameters are adjusted, based on observations. A dispersion relation is derived that adequately describes the MJO’s signal in the wavenumber–frequency spectrum and defines the MJO as a dispersive equatorial moist wave with a westward group velocity. On the basis of linear regression analysis of satellite and reanalysis data, it is estimated that the MJO’s group velocity is ~40% as large as its phase speed. This dispersion is the result of the anomalous winds in the wave modulating the mean distribution of moisture such that the moisture anomaly propagates eastward while wave energy propagates westward. The moist wave grows through feedbacks involving moisture, clouds, and radiation and is damped by the advection of moisture associated with the Rossby wave. Additionally, a zonal wavenumber dependence is found in cloud–radiation feedbacks that cause growth to be strongest at planetary scales. These results suggest that this wavenumber dependence arises from the nonlocal nature of cloud–radiation feedbacks; that is, anomalous convection spreads upper-level clouds and reduces radiative cooling over an extensive area surrounding the anomalous precipitation.
Comparison of LADG to ODG in patients with early gastric cancer resulted in improved QOL outcomes in the patients followed for up to 3 months in the LADG group.
The Radiative‐Convective Equilibrium Model Intercomparison Project (RCEMIP) is an intercomparison of multiple types of numerical models configured in radiative‐convective equilibrium (RCE). RCE is an idealization of the tropical atmosphere that has long been used to study basic questions in climate science. Here, we employ RCE to investigate the role that clouds and convective activity play in determining cloud feedbacks, climate sensitivity, the state of convective aggregation, and the equilibrium climate. RCEMIP is unique among intercomparisons in its inclusion of a wide range of model types, including atmospheric general circulation models (GCMs), single column models (SCMs), cloud‐resolving models (CRMs), large eddy simulations (LES), and global cloud‐resolving models (GCRMs). The first results are presented from the RCEMIP ensemble of more than 30 models. While there are large differences across the RCEMIP ensemble in the representation of mean profiles of temperature, humidity, and cloudiness, in a majority of models anvil clouds rise, warm, and decrease in area coverage in response to an increase in sea surface temperature (SST). Nearly all models exhibit self‐aggregation in large domains and agree that self‐aggregation acts to dry and warm the troposphere, reduce high cloudiness, and increase cooling to space. The degree of self‐aggregation exhibits no clear tendency with warming. There is a wide range of climate sensitivities, but models with parameterized convection tend to have lower climate sensitivities than models with explicit convection. In models with parameterized convection, aggregated simulations have lower climate sensitivities than unaggregated simulations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.