Hexagonal boron nitride (h-BN) is gaining significant attention as a two-dimensional dielectric material, along with graphene and other such materials. Herein, we demonstrate the growth of highly crystalline, single-layer h-BN on Pt foil through a low-pressure chemical vapor deposition method that allowed h-BN to be grown over a wide area (8 × 25 mm(2)). An electrochemical bubbling-based method was used to transfer the grown h-BN layer from the Pt foil onto an arbitrary substrate. This allowed the Pt foil, which was not consumed during the process, to be recycled repeatedly. The UV-visible absorption spectrum of the single-layer h-BN suggested an optical band gap of 6.06 eV, while a high-resolution transmission electron microscopy image of the same showed the presence of distinct hexagonal arrays of B and N atoms, which were indicative of the highly crystalline nature and single-atom thickness of the h-BN layer. This method of growing single-layer h-BN over large areas was also compatible with use of a sapphire substrate.
To modify oxide structure and introduce a thin conductive film on Li4Ti5O12, thermal nitridation was adopted for the first time. NH3 decomposes surface Li4Ti5O12 to conductive TiN at high temperature, and surprisingly, it also modifies the surface structure in a way to accommodate the single phase Li insertion and extraction. The electrochemically induced Li4+deltaTi5O12 with a TiN coating layer shows great electrochemical properties at high current densities.
An array of surface-immobilized proton-fueled DNA nanomachines is reversibly actuated by cycling of the solution pH between 4.5 and 9, producing a conformational change between a four-stranded and a double-stranded structure, which elongates or shortens the separation distance between the 5' and 3' end of the DNA. By labeling the DNA 3' end with a fluorophore and immobilizing it onto a thin-gold surface through its 5' thiol modification, the nanoscale motion of the DNA produces mechanical work to lift up and bring down the fluorophore from the gold surface by at least 2.5 nm and transduces this motion into an optical "on-and-off" nanoswitch.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.