BackgroundThe freshwater mussel Cristaria plicata (Bivalvia: Eulamellibranchia: Unionidae), is an economically important species in molluscan aquaculture due to its use in pearl farming. The species have been listed as endangered in South Korea due to the loss of natural habitats caused by anthropogenic activities. The decreasing population and a lack of genomic information on the species is concerning for environmentalists and conservationists. In this study, we conducted a de novo transcriptome sequencing and annotation analysis of C. plicata using Illumina HiSeq 2500 next-generation sequencing (NGS) technology, the Trinity assembler, and bioinformatics databases to prepare a sustainable resource for the identification of candidate genes involved in immunity, defense, and reproduction.ResultsThe C. plicata transcriptome analysis included a total of 286,152,584 raw reads and 281,322,837 clean reads. The de novo assembly identified a total of 453,931 contigs and 374,794 non-redundant unigenes with average lengths of 731.2 and 737.1 bp, respectively. Furthermore, 100% coverage of C. plicata mitochondrial genes within two unigenes supported the quality of the assembler. In total, 84,274 unigenes showed homology to entries in at least one database, and 23,246 unigenes were allocated to one or more Gene Ontology (GO) terms. The most prominent GO biological process, cellular component, and molecular function categories (level 2) were cellular process, membrane, and binding, respectively. A total of 4,776 unigenes were mapped to 123 biological pathways in the KEGG database. Based on the GO terms and KEGG annotation, the unigenes were suggested to be involved in immunity, stress responses, sex-determination, and reproduction. A total of 17,251 cDNA simple sequence repeats (cSSRs) were identified from 61,141 unigenes (size of >1 kb) with the most abundant being dinucleotide repeats.ConclusionsThis dataset represents the first transcriptome analysis of the endangered mollusc, C. plicata. The transcriptome provides a comprehensive sequence resource for the conservation of genetic information in this species and enrichment of the genetic database. The development of molecular markers will assist in the genetic improvement of C. plicata.
Vespa mandarinia found in the forests of East Asia, including Korea, occupies the highest rank in the arthropod food web within its geographical range. It serves as a source of nutrition in the form of Vespa amino acid mixture and is listed as a threatened species, although no conservation measures have been implemented. Here, we performed de novo assembly of the V. mandarinia transcriptome by Illumina HiSeq 4000 sequencing. Over 60 million raw reads and 59,184,811 clean reads were obtained. After assembly, a total of 66,837 unigenes were clustered, 40,887, 44,455, and 22,390 of which showed homologous matches against the PANM, Unigene, and KOG databases, respectively. A total of 15,675 unigenes were assigned to Gene Ontology terms, and 5,132 unigenes were mapped to 115 KEGG pathways. The zinc finger domain (C2H2-like), serine/threonine/dual specificity protein kinase domain, and RNA recognition motif domain were among the top InterProScan domains predicted for V. mandarinia sequences. Among the unigenes, we identified 534,922 cDNA simple sequence repeats as potential markers. This is the first transcriptomic analysis of the wasp V. mandarinia using Illumina HiSeq 4000. The obtained datasets should promote the search for new genes to understand the physiological attributes of this wasp.
The Lycaenidae butterflies, Protantigius superans and Spindasis takanosis, are endangered insects in Korea known for their symbiotic association with ants. However, necessary genomic and transcriptomics data are lacking in these species, limiting conservation efforts. In this study, the P. superans and S. takanosis transcriptomes were deciphered using Illumina HiSeq 2500 sequencing. The P. superans and S. takanosis transcriptome data included a total of 254,340,693 and 245,110,582 clean reads assembled into 159,074 and 170,449 contigs and 107,950 and 121,140 unigenes, respectively. BLASTX hits (E-value of 1.0 × 10−5) against the known protein databases annotated a total of 46,754 and 51,908 transcripts for P. superans and S. takanosis. Approximately 41.25% and 38.68% of the unigenes for P. superans and S. takanosis found homologous sequences in Protostome DB (PANM-DB). BLAST2GO analysis confirmed 18,611 unigenes representing Gene Ontology (GO) terms and a total of 5259 unigenes assigned to 116 pathways for P. superans. For S. takanosis, a total of 6697 unigenes were assigned to 119 pathways using the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway database. Additionally, 382,164 and 390,516 Simple Sequence Repeats (SSRs) were compiled from the unigenes of P. superans and S. takanosis, respectively. This is the first report to record new genes and their utilization for conservation of lycaenid species population and as a reference information for closely related species.
An aquatic gastropod belonging to the family Neritidae, Clithon retropictus is listed as an endangered class II species in South Korea. The lack of information on its genomic background limits the ability to obtain functional data resources and inhibits informed conservation planning for this species. In the present study, the transcriptomic sequencing and de novo assembly of C. retropictus generated a total of 241,696,750 high-quality reads. These assembled to 282,838 unigenes with mean and N50 lengths of 736.9 and 1201 base pairs, respectively. Of these, 125,616 unigenes were subjected to annotation analysis with known proteins in Protostome DB, COG, GO, and KEGG protein databases (BLASTX; E ≤ 0.00001) and with known nucleotides in the Unigene database (BLASTN; E ≤ 0.00001). The GO analysis indicated that cellular process, cell, and catalytic activity are the predominant GO terms in the biological process, cellular component, and molecular function categories, respectively. In addition, 2093 unigenes were distributed in 107 different KEGG pathways. Furthermore, 49,280 simple sequence repeats were identified in the unigenes (>1 kilobase sequences). This is the first report on the identification of transcriptomic and microsatellite resources for C. retropictus, which opens up the possibility of exploring traits related to the adaptation and acclimatization of this species.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.