[Purpose]Hemodynamic function is a parameter indicating oxygen delivery and utilization capacity and is an important determinant of exercise performance. The present study aimed to determine whether intermittent hypoxic training (IHT) ameliorates hemodynamic function and exercise performance in competitive swimmers.[Methods]Twenty competitive swimmers (10 men, 10 women) volunteered to participate in the study. Participants were divided into the normoxic training (NT) group and the hypoxic training (HT) group and were subjected to training in a simulated altitude of 3000 m. We evaluated hemodynamic function profiles over 30 min of submaximal exercise on a bicycle and exercise performance before and after 6 weeks of training, which involved continuous exercise at 80% maximal heart rate (HRmax) for 30 min and interval exercise at 90% of HRmax measured before training for 30 min (ten rounds comprising 2 min of exercise followed by 1 min of rest each round).[Results]Significant changes in oxygen consumption (decrease) and end-diastolic volume (increase) were observed only in the HT group. Heart rate (HR), cardiac output (CO), and ejection fraction (EF) were significantly reduced in both groups, but the reduction rates of HR and CO were greater in the HT group than in the NT group. Exercise performance measures, including maximal oxygen consumption and 400-m time trial, were significantly increased only in the HT group.[Conclusion]Our findings suggested that 6 weeks of IHT, which involved high-intensity continuous and interval exercise, can effectively improve exercise performance by enhancing hemodynamic function in competitive swimmers.
[Purpose]This study was designed as a meta-analysis of randomized controlled trials comparing effectiveness of altitude/hypoxic training (experimental) versus sea-level training (control) on oxygen delivery capacity of the blood and aerobic exercise capacity of elite athletes in Korea.[Methods]Databases (Research Information Service System, Korean studies Information Service System, National Assembly Library) were for randomized controlled trials comparing altitude/hypoxic training versus sea-level training in elite athletes. Studies published in Korea up to December 2015 were eligible for inclusion. Oxygen delivery capacity of the blood was quantified by red blood cell (RBC), hemoglobin (Hb), hematocrit (Hct), erythropoietin (EPO); and aerobic exercise capacity was quantified by maximal oxygen consumption (VO2max). RBC, Hb, Hct, VO2max represented heterogeneity and compared post-intervention between altitude/hypoxic training and sea-level training in elite athletes by a random effect model meta-analysis. EPO represented homogeneity and meta-analysis performed by a fixed effect model. Eight independent studies with 156 elite athletes (experimental: n = 82, control: n = 74) were included in the metaanalysis.[Results]RBC (4.499×105 cell/ul, 95 % CI: 2.469 to 6.529), Hb (5.447 g/dl, 95 % CI: 3.028 to 7.866), Hct (3.639 %, 95 % CI: 1.687 to 5.591), EPO (0.711 mU/mL, 95% CI: 0.282 to 1.140), VO2max (1.637 ml/kg/min, 95% CI: 0.599 to 1.400) showed significantly greater increase following altitude/hypoxic training, as compared with sea-level training.[Conclusion]For elite athletes in Korea, altitude/ hypoxic training appears more effective than sea-level training for improvement of oxygen delivery capacity of the blood and aerobic exercise capacity.
BackgroundThe freshwater mussel Cristaria plicata (Bivalvia: Eulamellibranchia: Unionidae), is an economically important species in molluscan aquaculture due to its use in pearl farming. The species have been listed as endangered in South Korea due to the loss of natural habitats caused by anthropogenic activities. The decreasing population and a lack of genomic information on the species is concerning for environmentalists and conservationists. In this study, we conducted a de novo transcriptome sequencing and annotation analysis of C. plicata using Illumina HiSeq 2500 next-generation sequencing (NGS) technology, the Trinity assembler, and bioinformatics databases to prepare a sustainable resource for the identification of candidate genes involved in immunity, defense, and reproduction.ResultsThe C. plicata transcriptome analysis included a total of 286,152,584 raw reads and 281,322,837 clean reads. The de novo assembly identified a total of 453,931 contigs and 374,794 non-redundant unigenes with average lengths of 731.2 and 737.1 bp, respectively. Furthermore, 100% coverage of C. plicata mitochondrial genes within two unigenes supported the quality of the assembler. In total, 84,274 unigenes showed homology to entries in at least one database, and 23,246 unigenes were allocated to one or more Gene Ontology (GO) terms. The most prominent GO biological process, cellular component, and molecular function categories (level 2) were cellular process, membrane, and binding, respectively. A total of 4,776 unigenes were mapped to 123 biological pathways in the KEGG database. Based on the GO terms and KEGG annotation, the unigenes were suggested to be involved in immunity, stress responses, sex-determination, and reproduction. A total of 17,251 cDNA simple sequence repeats (cSSRs) were identified from 61,141 unigenes (size of >1 kb) with the most abundant being dinucleotide repeats.ConclusionsThis dataset represents the first transcriptome analysis of the endangered mollusc, C. plicata. The transcriptome provides a comprehensive sequence resource for the conservation of genetic information in this species and enrichment of the genetic database. The development of molecular markers will assist in the genetic improvement of C. plicata.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.