The spectral behaviors of 4-n-pentyl-4'-cyanobiphenyl (5 CB) have been studied by means of temperature-dependent Raman spectros-copy in the range between --70 and 70 degrees C. The nu(C identical with N) bands in the Raman spectra were found splitting below the transition temperature from the solid to the nematic liquid crystalline phase at approximately 24 degrees C, suggesting the existence of solid crystalline polymorphism. The interfacial structures of 5 CB on metal plate surfaces have been reexamined by surface-enhanced Raman scattering (SERS) at different temperatures. On Ag and Au, the asymmetric shapes of the nu(C identical with N) bands suggest that there should exist different binding schemes for 5 CB on metal surfaces. These asymmetric bands in the nu(C identical with N) stretching region were found to vary in changing temperature.
Abstract:We synthesized a series of polystyrene derivatives containing various side chain terminal moieties, such as phenoxymethyl, 4-methoxyphenoxymethyl, 4-fluorophenoxymethyl, 4-methylphenoxymethyl, and 4-trifluoromethoxyphenoxymethyl groups, using polymer analogous reactions, in order to investigate the effect of the side group on their liquid crystal (LC) alignment behaviors. The polymers containing 4-fluorophenoxymethyl, 4-methylphenoxymethyl, or 4-trifluoromethoxyphenoxymethyl side groups had lower surface energy values and the LC cells fabricated using the unrubbed films of these polymers showed homeotropic LC alignment behavior. The LC cells fabricated using the rubbed films of the polymers containing phenoxymethyl or 4-fluorophenoxymethyl groups showed homogeneous planar LC alignment behavior in which the LCs were aligned perpendicular to the rubbing direction. This homogeneous planar and perpendicular alignment behavior was ascribed to the favorable anisotropic interactions between the LC molecules and the side groups preferentially oriented perpendicular to the rubbing direction.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.