Features of the oxidative cleavage reactions of diastereomers of dimeric lignin model compounds, which are models of the major types of structural units found in the lignin backbone, were examined. Cation radicals of these substances were generated by using SET-sensitized photochemical and Ce(IV) and lignin peroxidase promoted oxidative processes, and the nature and kinetics of their C-C bond cleavage reactions were determined. The results show that significant differences exist between the rates of cation radical C1-C2 bond cleavage reactions of 1,2-diaryl-(β-1) and 1-aryl-2-aryloxy-(β-O-4) propan-1,3-diol structural units found in lignins. Specifically, under all conditions C1-C2 bond cleavage reactions of cation radicals of the β-1 models take place more rapidly than those of the β-O-4 counterparts. The results of DFT calculations on cation radicals of the model compounds show that the C1-C2 bond dissociation energies of the β-1 lignin model compounds are significantly lower than those of the β-O-4 models, providing clear evidence for the source of the rate differences.
Inkjet-printable diacetylene (DA) supramolecules, which can be dispersed in water without using additional surfactants, have been developed. The supramolecules are generated from DA monomers that contain bisurea groups, which are capable of forming hydrogen-bonding networks, and hydrophilic oligoethylene oxide moieties. Because of suitable size distribution and stability characteristics, the single DA component ink can be readily transferred to paper substrates by utilizing a common office inkjet printer. UV irradiation of the DA-printed paper results in generation of blue-colored polydiacetylene (PDA) images, which show reversible thermochromic transitions in specific temperature ranges. Inkjet-printed PDAs, in the format of a two-dimensional (2D) quick response (QR) code on a real parking ticket, serve as a dual anticounterfeiting system that combines easy decoding of the QR code and colorimetric PDA reversibility for validating the authenticity of the tickets. This single-component ink system has great potential for use in paper-based devices, temperature sensors, and anticounterfeiting barcodes.
A research program has been initiated to formulate new strategies for efficient low-cost lignocellulosic biomass processing technologies for the production of biofuels. This article reviews results from initial research into lignocellulosic biomass structure, recalcitrance, and pretreatment. In addition to contributing towards a comprehensive understanding of lignocellulosic biomass, this work has contributed towards demonstrated optimizations of existing pretreatment methods, and the emergence of new possible pretreatment strategies that remain to be fully developed.
Organic photochemists began to recognize in the 1970s that a new mechanistic pathway involving excited-state single-electron transfer (SET) could be used to drive unique photochemical reactions. Arnold's seminal studies demonstrated that SET photochemical reactions proceed by way of ion radical intermediates, the properties of which govern the nature of the ensuing reaction pathways. Thus, in contrast to classical photochemical reactions, SET-promoted excited-state processes are controlled by the nature and rates of secondary reactions of intermediate ion radicals. In this Account, we discuss our work in harnessing SET pathways for photochemical synthesis, focusing on the successful production of macrocyclic polyethers, polythioethers, and polyamides. One major thrust of our studies in SET photochemistry has been to develop new, efficient reactions that can be used for the preparation of important natural and non-natural substances. Our efforts with α-silyl donor-tethered phthalimides and naphthalimides have led to the discovery of efficient photochemical processes in which excited-state SET is followed by regioselective formation of carbon-centered radicals. The radical formation takes place through nucleophile-assisted desilylation of intermediate α-silyl-substituted ether-, thioether-, amine-, and amide-centered cation radicals. Early laser flash photolysis studies demonstrated that the rates of methanol- and water-promoted bimolecular desilylations of cation radicals (derived from α-silyl electron donors) exceeded the rates of other cation radical α-fragmentation processes, such as α-deprotonation. In addition, mechanistic analyses of a variety of SET-promoted photocyclization reactions of α-silyl polydonor-linked phthalimides and naphthalimides showed that the chemical and quantum efficiencies of the processes are highly dependent on the lengths and types of the chains connecting the imide acceptor and α-silyl electron donor centers. We also observed that reaction efficiencies are controlled by the rates of desilylation at the α-silyl donor cation radical moieties in intermediate zwitterionic biradicals that are formed by either direct excited-state intramolecular SET or by SET between the donor sites in the intervening chains. It is important to note that knowledge about how these factors govern product yields, regiochemical selectivities, and quantum efficiencies was crucial for the design of synthetically useful photochemical reactions of linked polydonor-acceptor substrates. The fruits of these insights are exemplified by synthetic applications in the concise preparation of cyclic peptide mimics, crown ethers and their lariat- and bis-analogs, and substances that serve as fluorescence sensors for important heavy metal cations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.