It has been reported that omeprazole is mainly metabolized via hepatic cytochrome P450 (CYP) 1A1/2, CYP2D1 and CYP3A1/2 in male Sprague-Dawley rats, and the expression of hepatic CYP3A1 is increased in male Sprague-Dawley rats with acute renal failure induced by uranyl nitrate (U-ARF rats). Thus, the metabolism of omeprazole would be expected to increase in U-ARF rats. After intravenous administration of omeprazole (20 mgkg −1 ) to U-ARF rats, the area under the plasma concentration-time curve from time zero to infinity (AUC) was significantly reduced (371 vs 494 mgminmL), possibly due to the significantly faster non-renal clearance (56.6 vs 41.2 mL min −1 kg −1 ) compared with control rats. This could have been due to increased expression of hepatic CYP3A1 in U-ARF rats. After oral administration of omeprazole (40 mgkg −1 ) to U-ARF rats, the AUC was also significantly reduced (89.3 vs 235 mg minmL −1 ) compared with control rats. The AUC difference after oral administration (62.0% decrease) was greater than that after intravenous administration (24.9% decrease). This may have been primarily due to increased intestinal metabolism of omeprazole caused by increased expression of intestinal CYP1A and 3A subfamilies in U-ARF rats, in addition to increased hepatic metabolism.
A series of experiments using various inducers and inhibitors of the hepatic microsomal cytochrome P450 (CYP) isozymes were conducted to find CYP isozymes responsible for the metabolism of omeprazole in male Sprague-Dawley rats. Omeprazole, 20 mg/kg, was administered intravenously. In rats pretreated with SKF 525-A (a nonspecific CYP isozyme inhibitor in rats), the time-averaged nonrenal clearance (Cl(nr)) was significantly slower (77.1% decrease) than that in untreated rats. This indicated that omeprazole is metabolized via CYP isozymes in rats. Hence, rats were pretreated with various enzyme inducers and inhibitors. In rats pretreated with 3-methylcholanthrene and dexamethasone (main inducers of CYP1A1/2 and 3A1/2 in rats, respectively), the Cl(nr) values were significantly faster (43.8% and 26.3% increase, respectively). In rats pretreated with troleandomycin and quinine (main inhibitors of CYP3A1/2 and 2D1 in rats, respectively), the Cl(nr) values were significantly slower (20.9% and 12.9% decrease, respectively). However, the Cl(nr) values were not significantly different in rats pretreated with orphenadrine, isoniazid and sulfaphenazole (main inducers of CYP2B1/2 and 2E1, and a main inhibitor of 2C11, respectively, in rats) compared with those of respective control rats. The above data suggested that omeprazole could be mainly metabolized via CYP1A1/2, 3A1/2 and 2D1 in male rats.
The aim of this study is to report the pharmacokinetics of omeprazole after intravenous (20 mg/kg) and oral (40 mg/kg) administration to rats with liver cirrhosis induced by dimethylnitrosamine (cirrhotic rats) with respect to CYP isozyme changes. The expressions of CYP1A2 and 3A1 decreased in cirrhotic rats and omeprazole is reported to be mainly metabolized via CYP1A1/2, 2D1, and 3A1/2 in male Sprague-Dawley rats. Hence, the pharmacokinetics of omeprazole could be changed in cirrhotic rats. After intravenous administration to cirrhotic rats, the AUC (1180 microg min/ml versus 474 microg min/ml) and CL(NR) (17.4 ml/min/kg versus 42.3 ml/min/kg) of omeprazole were significantly greater and slower, respectively, than the controls. This could be due to decrease in the expressions of CYP1A2 and 3A1 in cirrhotic rats. The significantly slower CL(NR) could be supported by significantly slower in vitro CL(int) for the disappearance of omeprazole from hepatic microsomal study (0.102 ml/min/mg protein versus 0.144 ml/min/mg protein) and slower hepatic blood flow rate in cirrhotic rats. After oral administration to cirrhotic rats, the AUC difference was considerably greater (451% versus 149%) than that after intravenous administration, possibly due to decrease in intestinal first-pass effect of omeprazole in addition to decrease in hepatic metabolism of omeprazole in cirrhotic rats.
After intravenous (at doses of 1, 2, 5, and 10 mg/kg) and oral (at doses of 1, 5, and 10 mg/kg) administration of torasemide, the pharmacokinetic parameters were dose-independent. Hence, the extent of absolute oral bioavailability (F) was also independent of oral doses; the values were 95.6, 98.8, and 97.3% for oral doses of 1, 5, and 10 mg/kg, respectively. The high F values indicated that the first-pass (gastric, intestinal, and hepatic) effects of torasemide in rats could be almost negligible. After intravenous administration, the total body clearances of torasemide were extensively slower than the reported cardiac output in rats and hepatic extraction ratio was only 3-4% suggesting almost negligible first-pass effects of torasemide in the heart, lung, and liver in rats. Based on in vitro rat tissue homogenate studies, the tissues studied also showed negligible metabolic activities for torasemide. Equilibrium of torasemide between plasma and blood cells of rat blood reached fast and plasma-to-blood cells concentration ratio was independent of initial blood concentrations of torasemide, 1, 5, and 10 microg/ml; the mean value was 0.279. Protein binding of torasemide to fresh rat plasma was 93.9 +/- 1.53% using an equilibrium dialysis technique.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.