Human breast milk (HBM) is essential for the infant’s growth and development right after birth and is an irreplaceable source of nutrition for early human survival. Various infant formulas have many similarities to HBM in many components, but there is no perfect substitute for HBM. Recently, various breast milk components and their roles have been studied according to the development of various analysis techniques. As is already well known, HBM contains about 87%–88% water, and 124- g/L solid components as macronutrients, including about 7% (60–70 g/L) carbohydrates, 1% (8–10 g/L) protein, and 3.8% (35–40 g/L) fat. The composition may vary depending on the environmental factors, including maternal diet. Colostrum is low in fat but high in protein and relatively rich in immuneprotective components. Although HBM contains enough vitamins to ensure normal growth of the infant, vitamins D and K may be insufficient, and the infant may require their supplementation. Growth factors in HBM also serve as various bioactive proteins and peptides on the intestinal tract, vasculature, nervous system, and endocrine system. In the past, HBM of a healthy mother was thought to be sterile. However, several subsequent studies have confirmed the presence of rich and diverse microbial communities in HBM. Some studies suggested that the genera <i>Staphylococcus</i> and <i>Streptococcus</i> may be universally predominant in HBM, but the origin of microbiota still remains controversial. Lastly, milk is the one of most abundant body fluid of microRNAs, which are known to play a role in various functions, such as immunoprotection and developmental programming, through delivering from HBM and absorption by intestinal epithelial cells. In conclusion, HBM is the most important source of nutrition for infants and includes microbiomes and miRNAs for growth, development, and immunity.
Background After the global epidemic of coronavirus disease 2019 (COVID-19), lifestyle changes to curb the spread of COVID-19 (e.g., wearing a mask, hand washing, and social distancing) have also affected the outbreak of other infectious diseases. However, few studies have been conducted on whether the incidence of gastrointestinal infections has changed over the past year with COVID-19. In this study, we examined how the incidence of gastrointestinal infections has changed since COVID-19 outbreak through open data. Methods We summarized the data on the several viruses and bacteria that cause gastrointestinal infections from the open data of the Korea Disease Control and Prevention Agency for 3 years from March 2018 to February 2021 (from Spring 2018 to Winter 2020). Moreover, we confirmed three most common legal gastrointestinal infectious pathogens from March 2016. Results From March 2020, when the COVID-19 epidemic was in full swing and social distancing and personal hygiene management were heavily emphasized, the incidence of infection from each virus was drastically decreased. The reduction rates compared to the averages of the last 2 years were as follows: total viruses 31.9%, norovirus 40.2%, group A rotavirus 31.8%, enteric adenovirus 13.4%, astrovirus 7.0%, and sapovirus 12.2%. Among bacterial pathogens, the infection rates of Campylobacter and Clostridium perfringens did not decrease but rather increased in some periods when compared to the average of the last two years. The incidence of nontyphoidal Salmonella, Staphylococcus aureus , or enteropathogenic Escherichia coli somewhat decreased but not significantly compared to the previous two years. Conclusion The incidence of infection from gastrointestinal viruses, which are mainly caused by the fecal-to-oral route and require direct contact among people, was significantly reduced, whereas the incidence of bacterial pathogens, which have food-mediated transmission as the main cause of infection, did not decrease significantly.
Human breast milk (HBM) is not only an indispensable source of nutrients for early human growth and development, supplying components that support infant growth and development, but also contains various essential immunologic components with anti-infectious activities and critical roles in the formation of immunity. It is also known that HBM contains its own unique microbiome, including beneficial, commensal, and potentially probiotic bacteria, that can contribute to infant gut colonization. In addition, HBM-derived extracellular vesicles, exosomes, and microRNA are attracting increasing interest for their potential to transfer to the infant and their role in infant development. In this article, we examine some of the various constituents in HBM and review the evidence supporting their associated health effects and their potential applications in human health.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.