In this study, carbon nanotubes (CNTs) were introduced into carbon fiber (CF) wet-laid composites as functional nano-fillers to fabricate multi-functional composites with improved mechanical, electrical, and thermal properties. It was considered that the wet-laid process was most suitable in order to introduce filler into brittle and rigid carbon fiber substrates, and we established the conditions of the process that could impart dispersibility and bonding between the fibers. We introduced polyamide 6 (PA6) short fiber, which is the same polymeric material as the stacking film, into carbon fiber and CNT mixture to enhance the binding interactions between carbon fiber and CNTs. Various types of CNT-reinforced carbon fiber wet-laid composites with PA6 short fibers were prepared, and the morphology, mechanical and electrical properties of the composites were estimated. As CNT was added to the carbon fiber nonwoven, the electrical conductivity increased by 500% but the tensile strength decreased slightly. By introducing short fibers of the same material as the matrix between CNT–CF wet-laid nonwovens, it was possible to find optimum conditions to increase the electrical conductivity while maintaining mechanical properties.
Barium titanate (BaTiO3) nanoparticles were synthesized at the low temperature of 80°C through a glycothermal reaction using Ba(OH)2·8H2O and amorphous titanium hydrous gel as precursors and a solution of 1,4‐butanediol and water as solvent. This processing method provides a simple low‐temperature route for producing BaTiO3 nanoparticles, which could also be extended to other systems. It is demonstrated that the size of BaTiO3 particles can be controlled by reaction conditions, such as reaction temperature and various volume ratios of 1,4‐butanediol/water.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.