Molecular understanding of serological immunity to influenza has been confounded by the complexity of the polyclonal antibody response in humans. Here we used high-resolution proteomics analysis of immunoglobulin (referred to as Ig-seq) coupled with high-throughput sequencing of transcripts encoding B cell receptors (BCR-seq) to quantitatively determine the antibody repertoire at the individual clonotype level in the sera of young adults before and after vaccination with trivalent seasonal influenza vaccine. The serum repertoire comprised between 40 and 147 clonotypes that were specific to each of the three monovalent components of the trivalent influenza vaccine, with boosted pre-existing clonotypes accounting for ~60% of the response. An unexpectedly high fraction of serum antibodies recognized both the H1 and H3 monovalent vaccines. Recombinant versions of these H1 + H3 cross-reactive antibodies showed broad binding to hemagglutinins (HAs) from previously circulating virus strains; several of these antibodies, which were prevalent in the serum of multiple donors, recognized the same conserved epitope in the HA head domain. Although the HA-head-specific H1 + H3 antibodies did not show neutralization activity in vitro, they protected mice against infection with the H1N1 and H3N2 virus strains when administered before or after challenge. Collectively, our data reveal unanticipated insights regarding the serological response to influenza vaccination and raise questions about the added benefits of using a quadrivalent vaccine instead of a trivalent vaccine.
The prostate gland mainly contains basal and luminal cells constructed as a pseudostratified epithelium. Annotation of prostate epithelial transcriptomes provides a foundation for discoveries that can impact disease understanding and treatment. Here we describe a genome-wide transcriptome analysis of human benign prostatic basal and luminal epithelial populations using deep RNA sequencing. Through molecular and biological characterizations, we show that the differential gene-expression profiles account for their distinct functional properties. Strikingly, basal cells preferentially express gene categories associated with stem cells, neurogenesis and ribosomal RNA (rRNA) biogenesis. Consistent with this profile, basal cells functionally exhibit intrinsic stem-like and neurogenic properties with enhanced rRNA transcription activity. Of clinical relevance, the basal cell gene-expression profile is enriched in advanced, anaplastic, castration-resistant and metastatic prostate cancers. Therefore, we link the cell-type-specific gene signatures to aggressive subtypes of prostate cancer and identify gene signatures associated with adverse clinical features.
Elucidating how antigen exposure and selection shape the human antibody repertoire is fundamental to our understanding of B-cell immunity. We sequenced the paired heavy-and light-chain variable regions (VH and VL, respectively) from large populations of single B cells combined with computational modeling of antibody structures to evaluate sequence and structural features of human antibody repertoires at unprecedented depth. Analysis of a dataset comprising 55,000 antibody clusters from CD19− IgM-naive B cells, >120,000 antibody clusters from CD19+ antigenexperienced B cells, and >2,000 RosettaAntibody-predicted structural models across three healthy donors led to a number of key findings: (i) VH and VL gene sequences pair in a combinatorial fashion without detectable pairing restrictions at the population level; (ii) certain VH:VL gene pairs were significantly enriched or depleted in the antigen-experienced repertoire relative to the naive repertoire; (iii) antigen selection increased antibody paratope net charge and solvent-accessible surface area; and (iv) public heavy-chain third complementarity-determining region (CDR-H3) antibodies in the antigen-experienced repertoire showed signs of convergent paired light-chain genetic signatures, including shared light-chain third complementarity-determining region (CDR-L3) amino acid sequences and/or Vκ,λ-Jκ,λ genes. The data reported here address several longstanding questions regarding antibody repertoire selection and development and provide a benchmark for future repertoire-scale analyses of antibody responses to vaccination and disease.antibody | B cell | immunology | high-throughput sequencing | computational modeling E ffective antigen recognition by the humoral immune system is predicated on the somatic generation of a large antibody repertoire that encompasses the sequence and conformational diversity to respond to a highly diversified set of antigens (1-3). Upon antigen challenge, naive B cells (NBCs) expressing unmutated antibodies capable of binding antigen with an affinity sufficient to initiate B-cell receptor (BCR) signaling may be stimulated to undergo somatic hypermutation (SHM) of the antibody genes. B cells expressing higher-affinity BCRs are better equipped to compete for antigen and thus receive signals that enable their preferential proliferation and further antibody sequence diversification in additional rounds of SHM. This process generates a repertoire of somatically mutated antibodies that, at the structural level, generally display decreased conformational flexibility (4, 5), slower antigen dissociation rates, and increased binding selectivity relative to the germline repertoire.Understanding the salient features of the human antibody repertoire is critical for immunology research (6, 7). Specifically, additional information is needed regarding how a history of pathogen and environmental exposure modulates the sequence and conformational properties of naive antibodies to yield a mature antibody repertoire that confers effective protection. Hi...
Chromatin immunoprecipitation followed by sequencing (ChIP-seq) is widely used to detect genome-wide interactions between a protein of interest and DNA in vivo. Loci showing strong enrichment over adjacent background regions are typically considered to be sites of binding. Insufficient attention has been given to systematic artifacts inherent to the ChIP-seq procedure that might generate a misleading picture of protein binding to certain loci. We show here that unrelated transcription factors appear to consistently bind to the gene bodies of highly transcribed genes in yeast. Strikingly, several types of negative control experiments, including a protein that is not expected to bind chromatin, also showed similar patterns of strong binding within gene bodies. These false positive signals were evident across sequencing platforms and immunoprecipitation protocols, as well as in previously published datasets from other labs. We show that these false positive signals derive from high rates of transcription, and are inherent to the ChIP procedure, although they are exacerbated by sequencing library construction procedures. This expression bias is strong enough that a known transcriptional repressor like Tup1 can erroneously appear to be an activator. Another type of background bias stems from the inherent nucleosomal structure of chromatin, and can potentially make it seem like certain factors bind nucleosomes even when they don't. Our analysis suggests that a mock ChIP sample offers a better normalization control for the expression bias, whereas the ChIP input is more appropriate for the nucleosomal periodicity bias. While these controls alleviate the effect of the biases to some extent, they are unable to eliminate it completely. Caution is therefore warranted regarding the interpretation of data that seemingly show the association of various transcription and chromatin factors with highly transcribed genes in yeast.
Understanding the relationships between regulatory factor binding, chromatin structure, cis-regulatory elements and RNA-regulation mechanisms relies on accurate information about transcription start sites (TSS) and polyadenylation sites (PAS). Although several approaches have identified transcript ends in yeast, limitations of resolution and coverage have remained, and definitive identification of TSS and PAS with single-nucleotide resolution has not yet been achieved. We developed SMORE-seq (simultaneous mapping of RNA ends by sequencing) and used it to simultaneously identify the strongest TSS for 5207 (90%) genes and PAS for 5277 (91%) genes. The new transcript annotations identified by SMORE-seq showed improved distance relationships with TATA-like regulatory elements, nucleosome positions and active RNA polymerase. We found 150 genes whose TSS were downstream of the annotated start codon, and additional analysis of evolutionary conservation and ribosome footprinting suggests that these protein-coding sequences are likely to be mis-annotated. SMORE-seq detected short non-coding RNAs transcribed divergently from more than a thousand promoters in wild-type cells under normal conditions. These divergent non-coding RNAs were less evident at promoters containing canonical TATA boxes, suggesting a model where transcription initiation at promoters by RNAPII is bidirectional, with TATA elements serving to constrain the directionality of initiation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.