In establishing adequate climate change policies regarding water resource development and management, the most essential step is performing a rainfall-runoff analysis. To this end, although several physical models have been developed and tested in many studies, they require a complex grid-based parameterization that uses climate, topography, land-use, and geology data to simulate spatiotemporal runoff. Furthermore, physical rainfall-runoff models also suffer from uncertainty originating from insufficient data quality and quantity, unreliable parameters, and imperfect model structures. As an alternative, this study proposes a rainfall-runoff analysis system for the Kratie station on the Mekong River mainstream using the long short-term memory (LSTM) model, a data-based black-box method. Future runoff variations were simulated by applying a climate change scenario. To assess the applicability of the LSTM model, its result was compared with a runoff analysis using the Soil and Water Assessment Tool (SWAT) model. The following steps (dataset periods in parentheses) were carried out within the SWAT approach: parameter correction (2000–2005), verification (2006–2007), and prediction (2008–2100), while the LSTM model went through the process of training (1980–2005), verification (2006–2007), and prediction (2008–2100). Globally available data were fed into the algorithms, with the exception of the observed discharge and temperature data, which could not be acquired. The bias-corrected Representative Concentration Pathways (RCPs) 4.5 and 8.5 climate change scenarios were used to predict future runoff. When the reproducibility at the Kratie station for the verification period of the two models (2006–2007) was evaluated, the SWAT model showed a Nash–Sutcliffe efficiency (NSE) value of 0.84, while the LSTM model showed a higher accuracy, NSE = 0.99. The trend analysis result of the runoff prediction for the Kratie station over the 2008–2100 period did not show a statistically significant trend for neither scenario nor model. However, both models found that the annual mean flow rate in the RCP 8.5 scenario showed greater variability than in the RCP 4.5 scenario. These findings confirm that the LSTM runoff prediction presents a higher reproducibility than that of the SWAT model in simulating runoff variation according to time-series changes. Therefore, the LSTM model, which derives relatively accurate results with a small amount of data, is an effective approach to large-scale hydrologic modeling when only runoff time-series are available.
In Korea, approximately 70% of the country is mountainous, with steep slopes and heavy rainfall in summer from June to September. Korea is classified as a high-risk country for soil erosion, and the rate of soil erosion is rapidly increasing. In particular, the operation of Doam dam was suspended in 2001 because of water quality issues due to severe soil erosion from the upstream areas. In spite of serious dam sediment problems in this basin, in-depth studies on the origin of sedimentation using physic-based models have not been conducted. This study aims to analyze the spatial distribution of net erosion during typhoon events using a spatially distributed physics-based erosion model and to improve the model based on a field survey. The spatially uniform erodibility constants of the surface flow detachment equation in the original erosion model were replaced by land use erodibility constants based on benchmarking experimental values to reflect the effect of land use on net erosion. The results of the upgraded model considering spatial erodibility show a significant increase in soil erosion in crop fields and bare land, unlike the simulation results before model improvement. The total erosion and deposition for Typhoon Maemi in 2003 were 36,689.0 and 9893.3 m3, respectively, while the total erosion and deposition for Typhoon Rusa in 2002 were 142,476.6 and 44,806.8 m3, respectively, despite about twice as much rainfall and 1.2 times as high rainfall intensity. However, there is a limitation in quantifying the sources of erosion in the study watershed, since direct comparison of the simulated net erosion with observed spatial information from aerial images, etc., is impossible due to nonperiodic image photographing. Therefore, continuous monitoring of not only sediment yield but also periodic spatial detection on erosion and deposition is critical for reducing data uncertainty and improving simulation accuracy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.