Among the many deep learning methods, the convolutional neural network (CNN) model has an excellent performance in image recognition. Research on identifying and classifying image datasets using CNN is ongoing. Animal species recognition and classification with CNN is expected to be helpful for various applications. However, sophisticated feature recognition is essential to classify quasi-species with similar features, such as the quasi-species of parrots that have a high color similarity. The purpose of this study is to develop a vision-based mobile application to classify endangered parrot species using an advanced CNN model based on transfer learning (some parrots have quite similar colors and shapes). We acquired the images in two ways: collecting them directly from the Seoul Grand Park Zoo and crawling them using the Google search. Subsequently, we have built advanced CNN models with transfer learning and trained them using the data. Next, we converted one of the fully trained models into a file for execution on mobile devices and created the Android package files. The accuracy was measured for each of the eight CNN models. The overall accuracy for the camera of the mobile device was 94.125%. For certain species, the accuracy of recognition was 100%, with the required time of only 455 ms. Our approach helps to recognize the species in real time using the camera of the mobile device. Applications will be helpful for the prevention of smuggling of endangered species in the customs clearance area.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.