Situation awareness (SA) is crucial for safe driving. It is all about perception, comprehension of current situations and projection of the future status. It is demanding for drivers to constantly maintain SA by checking for potential hazards while performing the primary driving tasks. As vehicles in the future will be equipped with more sensors, it is likely that an SA aiding system will present complex situational information to drivers. Although drivers have difficulty to process a variety of complex situational information due to limited cognitive capabilities and perceive the information differently depending upon their cognitive states, the well-known SA design principles by Endsley only provide general guidelines. The principles lack detailed guidelines for dealing with limited human cognitive capabilities. Cognitive capability is a mental capability including planning, complex idea comprehension, and learning from experience. A cognitive state can be regarded as a condition of being (e.g., the state of being aware of the situation). In this paper, we investigate the key cognitive attributes related to SA in driving contexts (i.e., attention focus, mental model, workload, and memory). Endsley proposed that those key cognitive attributes are the main factors that influence SA. In those with higher levels of attributes, we found eight cognitive states which mainly influence a human driver in achieving SA. These are the focused attention state, inattentional blindness state, unfamiliar situation state, familiar situation state, insufficient mental resource state, sufficient mental resource state, high time pressure state, and low time pressure state. We then propose cognitive state aware SA design guidelines that can help designers to effectively convey situation information to drivers. As a case study, we demonstrated the usefulness of our cognitive state aware SA design guidelines by conducting controlled experiments where an existing SA interface is compared with a new SA interface designed following the key guidelines. We used the Situation Awareness Global Assessment Technique (SAGAT) and Decision-Making Questionnaire (DMQ) to measure the SA and decision-making style scores, respectively. Our results show that the new guidelines allowed participants to achieve significantly higher SA and exhibit better decision making performance.
As smartphone segments have become more complex in recent times, the importance of personas for designing and marketing has increased. Earlier, designers focused on traditional qualitative personas but have been criticised for the lack of evidence and outdated results. However, although several methods of quantitative persona creation have been developed over the last few years, the use of mobile application store data has not yet been studied. In this research, we propose a framework using work domain analysis to help designers and marketers to build personas easily from mobile phone application store data. We considered the top 100 applications, which were ranked based on the number of devices using each application, how often each application was used, and the usage time. After proposing a new framework, we analysed data from a mobile application store in January and August 2020. We then created quantitative personas based on the data and discussed with experts whether the created personas successfully reflected real changes in mobile application trends.
Because smartphones support various functions, they are carried by users everywhere. Whenever a user believes that a moment is interesting, important, or meaningful to them, they can record a video to preserve such memories. The main problem with video recording an important moment is the fact that the user needs to look at the scene through the mobile phone screen rather than seeing the actual real-world event. This occurs owing to uncertainty the user might feel when recording the video. For example, the user might not be sure if the recording is of high-quality and might worry about missing the target object. To overcome this, we developed a new camera application that utilizes two main algorithms, the minimum output sum of squared error and the histograms of oriented gradient algorithms, to track the target object and recognize the direction of the user’s head. We assumed that the functions of the new camera application can solve the user’s anxiety while recording a video. To test the effectiveness of the proposed application, we conducted a case study and measured the emotional responses of users and the error rates based on a comparison with the use of a regular camera application. The results indicate that the new camera application induces greater feelings of pleasure, excitement, and independence than a regular camera application. Furthermore, it effectively reduces the error rates during video recording.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.