[1] Analysis of observational estimates indicates that the El Niño-Southern Oscillation (ENSO) forced pattern in the extratropical Southern Hemisphere (SH), somewhat surprisingly, leads the peak phase of ENSO by one season. A Rossby wave source (RWS) analysis indicates that the tropical and extratropical RWS in the SH develops before the ENSO peak season and abruptly weakens thereafter. Further analysis shows that anomalous divergence/convergence and corresponding irrotational wind anomalies are sensitive to local seasonality. Numerical experiments in which the tropical Pacific is prescribed with perfectly periodic ENSO while all other oceans are simulated as a slab mixed layer model coupled to AGCM also show similar features. Additional numerical experiments in which ENSO forcing is shifted by 6 months (i.e., the ENSO peak in the southern winter season) indicate that the Northern Hemisphere atmosphere rather than the SH atmosphere precedes ENSO. This result supports the hypothesis that the ENSO forced pattern in the extratropics is strongly limited by local seasonality, rather than by the temporal phase of tropical remote forcing.
The MJO modulation of sea surface chlorophyll-a (Chl) examined initially by Waliser et al. in Geophys Res Lett, (2005) is revisited with a significantly longer time-series of observations and a more systematic approach to characterizing the possible mechanisms underlying the MJO-Chl relationships. The MJO composite analysis of Chl and lead-lag correlations between Chl and other physical variables reveal regional variability of Chl and corresponding indicative temporal relationships among variables. Along the path of the MJO convection, wind speed-a proxy for oceanic vertical turbulent mixing and corresponding entrainment-is most strongly correlated with Chl when wind leads Chl by a few days. Composite Chl also displays MJO influences away from the path of the MJO convection. The role of wind speed in those regions is generally the same for Chl variability as that along the path of the MJO convection, although Ekman pumping also plays a role in generating Chl variability in limited regions. However, the wind forcing away from the MJO convection path is less coherent, rendering the temporal link relatively weak. Lastly, the potential for bio-physical feedbacks at the MJO timescale is examined. The correlation analysis provides tantalizing evidence for local bio-feedbacks to the physical MJO system. Plausible hypothesis for Chl to amplify the MJO phase transition is presented though it cannot be affirmed in this study and will be examined and reported in a future modeling study.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.