One of the major concerns associated with high-performance gradients is peripheral nerve stimulation (PNS) of the subject during MRI exams. Since the installation, more than 680 volunteer subjects (patients and controls) have been scanned on a compact 3 T MRI system with high-performance gradients, capable of 80 mT m−1 gradient amplitude and 700 T m−1 s−1 slew rate simultaneously. Despite PNS concerns associated with the high-performance gradients, due to the smaller physical dimensions of the gradient coils, minimal or no PNS sensation was reported with most pulse sequences. The exception was PNS reported by only five of 252 subjects (about 2%) scanned with a specific 3D fast spin echo pulse sequence (3DFLAIR). Rather than derating the entire system performance across all pulse sequences and all gradient lobes, we addressed reported PNS effect with a simple and specific modification to the targeted lobes of the problematic pulse sequence. in addition, the PNS convolutional model was adapted to predict sequence-specific PNS threshold level and its reduction after derating. The effectiveness of the targeted pulse sequence modification was demonstrated by successfully re-scanning four of the subjects who previously reported PNS sensations without further reported PNS. The pulse sequence modification did not result in noticeable degradation of image quality or substantial increase in scan time. The results demonstrated that PNS was rarely reported on the compact 3 T, and when it was, utilizing a specific modification of the gradient waveform causing PNS was an effective strategy, rather than derating the performance of the entire gradient system.
This study was to evaluate the proposed consecutive multishot echo planar imaging (cmsEPI) combined with a parallel imaging technique in terms of signal-to-noise ratio (SNR) and acceleration for a functional imaging study. We developed cmsEPI sequence using both consecutively acquired multishot EPI segments and variable flip angles to minimize the delay between segments and to maximize the SNR, respectively. We also combined cmsEPI with the generalized autocalibrating partially parallel acquisitions (GRAPPA) method. Temporal SNRs were measured at different acceleration factors and number of segments for functional sensitivity evaluation. We also examined the geometric distortions, which inherently occurred in EPI sequence. The practical acceleration factors, R = 2 or R = 3, of the proposed technique improved the temporal SNR by maximally 18% in phantom test and by averagely 8.2% in in vivo experiment, compared to cmsEPI without parallel imaging. The data collection time was decreased in inverse proportion to the acceleration factor as well. The improved temporal SNR resulted in better statistical power when evaluated on the functional response of the brain. In this study, we demonstrated that the combination of cmsEPI with the parallel imaging technique could provide the improved functional sensitivity for functional imaging study, compensating for the lower SNR by cmsEPI.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.