Chronic stress disrupts brain homeostasis and adversely affects the cerebro-vascular system. Even though the effects of chronic stress on brain system have been extensively studied, there are few in vivo dynamic studies on the effects of chronic stress on the cerebro-vascular system. In this study, the effects of chronic stress on cerebral vasculature and BBB permeability were studied using in vivo two-photon (2p) microscopic imaging with an injection of fluorescence-conjugated dextran. Our real-time 2p imaging results showed that chronic stress reduced the vessel diameter and reconstructed vascular volume, regardless of vessel type and branching order. BBB permeability was investigated with two different size of tracers. Stressed animals exhibited a greater BBB permeability to 40-kDa dextran, but not to 70-kDa dextran, which is suggestive of weakened vascular integrity following stress. Molecular analysis revealed significantly higher VEGFa mRNA expression and a reduction in claudin-5. In summary, chronic stress decreases the size of cerebral vessels and increases BBB permeability. These results may suggest that the sustained decrease in cerebro-vascular volume due to chronic stress leads to a hypoxic condition that causes molecular changes such as VEGF and claudin-5, which eventually impairs the function of BBB.
A new blue light emitting anthracene derivative, 9,10-bis-(9',9'-diethyl-7'-t-butyl-fluoren-2'-yl)anthracene (BETF), has been designed and synthesized by a palladium catalyzed Suzuki cross-coupling. A theoretical calculation of the three-dimensional structure of BETF supports that it has a non coplanar structure and inhibited intermolecular interactions resulting in high luminescent efficiency and high color purity. BETF has good thermal stability with glass-transition temperature (Tg) of 131 o C. The PL maximum of BETF in solution and film were 438 nm and 440 nm, respectively, showing pure blue emission. A multilayer device using BETF as emitting material exhibits maximum luminescence efficiency of 2.2 cd/A and a pure blue emission (Commission Internationale de L'Eclairage (CIE) coordinates of x = 0.15, y = 0.10).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.