Background
Little is known about the relationship between intrinsic cardiac nerve activity (ICNA) and spontaneous arrhythmias in ambulatory animals.
Methods and Results
We implanted radiotransmitters to record extrinsic cardiac nerve activity (ECNA, including stellate ganglion nerve activity, SGNA; vagal nerve activity, VNA) and ICNA (including superior left ganglionated plexi nerve activity, SLGPNA; ligament of Marshall nerve activity, LOMNA) in 6 ambulatory dogs. Intermittent rapid left atrial pacing was performed to induce paroxysmal atrial fibrillation (PAF) or atrial tachycardia (PAT). The vast majority (94%) of LOMNA were preceded or co-activated with ECNA (SGNA or VNA), whereas 6% of episodes were activated alone without concomitant SGNA or VNA. PAF and PAT were invariably (100%) preceded (<5 s) by ICNA. Most of PAT events (89%) were preceded by ICNA and sympathovagal co-activation, whereas 11% were preceded by ICNA and SGNA-only activation. Most of PAF events were preceded only by ICNA (72%); the remaining 28% by ECNA and ICNA together. Complex fractionated atrial electrograms (CFAEs) were observed during ICNA discharges that preceded the onset of PAT and PAF. Immunostaining confirmed the presence of both adrenergic and cholinergic nerve at ICNA sites.
Conclusions
There is a significant temporal relationship between ECNA and ICNA. However, ICNA can also activate alone. All PAT and PAF episodes were invariably preceded by ICNA. These findings suggest that ICNA (either alone or in collaboration with ECNA) is an invariable trigger of paroxysmal atrial tachyarrhythmias. ICNA might contaminate local atrial electrograms, resulting in CFAE-like activity.
Abstract-We analyze the software stack of popular mobile advertising libraries on Android and investigate how they protect the users of advertising-supported apps from malicious advertising. We find that, by and large, Android advertising libraries properly separate the privileges of the ads from the host app by confining ads to dedicated browser instances that correctly apply the same origin policy.We then demonstrate how malicious ads can infer sensitive information about users by accessing external storage, which is essential for media-rich ads in order to cache video and images. Even though the same origin policy prevents confined ads from reading other apps' external-storage files, it does not prevent them from learning that a file with a particular name exists. We show how, depending on the app, the mere existence of a file can reveal sensitive information about the user. For example, if the user has a pharmacy price-comparison app installed on the device, the presence of external-storage files with certain names reveals which drugs the user has looked for.We conclude with our recommendations for redesigning mobile advertising software to better protect users from malicious advertising.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.