The conductive polymeric composites incorporating carbon nanotube (CNT) and carbonyl iron powder (CIP) have attracted much attention for various sensor applications. In this paper, a comprehensive study of the magneto-sensing property of a CNT-CIP embedded polymer composite is conducted to implement the composite as magneto-sensors. Thus, this study experimentally investigated the magneto-sensing performances of CNT-doped polymeric composites with the addition of CIP in terms of electrical conductivity, sensitivity, repeatability, and response time. First, the CNT-CIP clusters were manufactured and their interactions were analyzed with the zeta potential measurement and SEM observation. Then, the CNT-CIP clusters were embedded into the polymeric composites for the magneto-sensing evaluations. Experiments showed that the CNT contents in the range of percolation threshold (i.e., 0.5% and 0.75%) are optimal values for sensor applications. The addition of CNT 0.5% and 0.75% resulted in a high sensitivity of 7% and a faster response time within 400 ms. Experiment evaluation confirmed a high potential of implementing CNT-CIP composite as magneto-sensors.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.